,是弱类型的,同时与data.frame有相同的语法,使用起来更方便。...,会自动添加列名 tibble,类型只能回收长度为1的输入 tibble,会懒加载参数,并按顺序运行 tibble,是tbl_df类型 tibble是data.frame的进化版,有如下优点:生成的数据框数据每列可以保持原来的数据格式...data位置 管道函数在tidyverse中,管道符号是数据整理的主力,可以把许多功能连在一起,而且简洁好看,比起R的基本代码更加容易阅读!...#key:需要将变量值拓展为字段的变量 #value:需要分散的值 #fill:对于缺失值,可将fill的值赋值给被转型后的缺失值 stocks <- data.frame( time = as.Date...#into:新建的列名,为字符串向量 #sep:被拆分列的分隔符 #remove:是否删除被分割的列 widesep <- separate(wideunite, information,c("person
这篇文章我们先来了解一下pandas包中的类SQL操作,pandas中基本涵盖了SQL和EXCEL中的数据处理功能,灵活应用的话会非常高效。...写过SQL的小伙伴了解,条件查询就是SQL中WHERE的部分, pandas如何实现where条件,我们来仔细盘一下: 第一种写法: print(data[data['a'] >= '2']) 上面可以解读为...3, 6, 0, 8, 5]) B = np.where(A%2 == 0, A+1, A-1) # 偶+1,奇-1 print(B) SQL中有一个函数为like,即为模糊查询,这一查询方式在pandas...pandas的强大,几乎涵盖了SQL的函数功能。...SQL中的join函数。
在pandas的官方文档中对常用的SQL查询语句与pandas的查询语句进行了对比,这里以 @猴子 社群里面的朝阳医院数据为例进行演示,顺便求第四关门票,整体数据结构如下: import pandas...SELECT 从中选择“商品名称”,“销售数量”两列 SQL: SELECT "商品名称","销售数量" FROM cyyy LIMIT 5 PANDAS: df[['商品名称','销售数量']].head...WHERE 从中筛选出销售数量为3件的销售记录 SQL: SELECT * FROM cyyy WHERE "销售数量" = 3 LIMIT 5 PANDAS: df[df['销售数量']==3].head...GROUP BY 在Pandas中可以使用groupby()函数实现类似于SQL中的GROUP BY功能,groupby()能将数据集按某一条件分为多个组,然后对其进行某种函数运算(通常是聚合运算)。...如统计每种药品的销售记录数量 SQL: SELECT 商品名称,count(*) FROM cyyy GROUP BY 商品名称 PANDAS: df.groupby('商品名称').size().head
Pandas是一个非常方便的数据处理、数据分析的类库,在 人人都是数据分析师,人人都能玩转Pandas 这篇文章中,我将Pandas进行了一个系统的梳理。...但不可否认的是,不是所有的程序员都会Python,也不是所有的Pythoner都会使用Pandas。 不过好消息是,借助于pandassql,你可以使用SQL来操作DataFrame。...pandasql 中的主要函数是 sqldf,它接收两个参数: 一个sql查询语句 一组会话/环境变量(locals() 或 globals()) 为了方便起见,我们可以定义一个函数来方便我们调用。...268849 1 1975-04-01 00:00:00.000000 247455 限定字段 既然是SQL,我们当然可以限定查询时的所需字段了。...sql = "select births from births limit 2" pysqldf(sql) births 0 265775 1 241045 排序 排序功能也是非常常见的,pandassql
介绍 SQL的神奇之处在于它容易学习,而它容易学习的原因是代码语法非常直观。 另一方面,Pandas不是那么直观,特别是如果像我一样首先从SQL开始。...就我个人而言,我发现真正有用的是思考如何在SQL中操作数据,然后在Pandas中复制它。所以如果你想更加精通Pandas,我强烈建议你也采用这种方法。...# Pandas table_df SELECT a, b FROM 如果你想从一个表中选择特定的列,列出你想要的列在双括号中: # SQL SELECT column_a, column_b...获取不同的值: # SQL SELECT DISTINCT column_a FROM table_df # Pandas table_df['column_a'].drop_duplicates...']==1) & (table_df['column_b']==2)] SELECT WHERE LIKE 相当于SQL中的LIKE的是.str.contains()。
我们将用pandas和SQL来实现同样的目标,以此来联系二者,达到共同学习的目的。...4.查询带有1个条件的数据 例如我们要查询uid为10003的所有记录。pandas需要使用布尔索引的方式,而SQL中需要使用where关键字。...本例子中inner join 和left join的结果是一样的,在这里不作结果展示,pandas和SQL代码如下。...分别用pandas和SQL实现如下,注意这里我们的基础数据是上一步的order_df,SQL中也需要用子查询来实现。(点击图片可以查看大图) ?...熟悉pandas的朋友应该能想到,pandas的这种分组操作有一种专门的术语叫“分箱”,相应的函数为cut,qcut,能实现同样的效果。为了保持和SQL操作的一致性,此处采用了map函数的方式。
03 Pandas实现 Pandas作为Python数据分析与处理的主力工具,自然也是支持窗口函数的,而且花样只会比SQL更多。...注:上述代码应用了assign实现链式调用,具体可参考文章Pandas用了一年,这3个函数是我的最爱…… Q2:求解每名同学历次月考成绩的差值,即本月成绩-上月成绩。...进一步地,对于求解差分结果,还可直接用diff实现,其中diff就相当于当前行-shift(1)。...至于SQL中窗口函数的另外两个关键字partition和order则仍然需要借助Pandas的sort_values和gropupby来实现。...总体来看,SQL和Spark实现窗口函数的方式和语法更为接近,而Pandas虽然拥有丰富的API,但对于具体窗口函数功能的实现上却不尽统一,而需灵活调用相应的函数。
,我们对比了pandas和SQL在数据方面的多项操作。...第二篇文章一场pandas与SQL的巅峰大战(二)涉及字符串处理,窗口函数,行列转换,类型转换等操作。...第四篇文章一场pandas与SQL的巅峰大战(四)学习了在MySQL,Hive SQL和pandas中用多种方式计算日环比,周同比的方法。...本篇文章一起来探讨如何在SQL和pandas中计算累计百分比。仍然分别在MySQL,Hive SQL和pandas中用多种方案来实现。...推荐阅读: 1.一场pandas与SQL的巅峰大战 2.一场pandas与SQL的巅峰大战(二) 3.一场pandas与SQL的巅峰大战(三) 4.一场pandas与SQL的巅峰大战(四) 5.常用Hive
第四篇文章一场pandas与SQL的巅峰大战(四)学习了在MySQL,Hive SQL和pandas中用多种方式计算日环比,周同比的方法。...第五篇文章一场pandas与SQL的巅峰大战(五)我们用多种方案实现了分组和不分组情况下累计百分比的计算。 本篇文章主要来总结学习SQL和pandas中计算日活和多日留存的方法。...(在这里也纠正一下系列第一篇文章中第6部分中的写法,np.size 是不去重的,相当于count,但又不能直接写np.nunique,所以我们采用了lambda函数的形式。...至此,我们完成了SQL和pandas对日活和留存率的计算。 小结 本篇文章我们研究了非常重要的两个概念,日活和留存。探讨了如何用SQL和pandas进行计算。日活计算比较简单。...推荐阅读: 1.一场pandas与SQL的巅峰大战 2.一场pandas与SQL的巅峰大战(二) 3.一场pandas与SQL的巅峰大战(三) 4.一场pandas与SQL的巅峰大战(四) 5.一场pandas
上一篇文章一场pandas与SQL的巅峰大战中,我们对比了pandas与SQL常见的一些操作,我们的例子虽然是以MySQL为基础的,但换作其他的数据库软件,也一样适用。...本文将延续上一篇文章的风格和思路,继续对比Pandas与SQL,一方面是对上文的补充,另一方面也继续深入学习一下两种工具。...方便起见,本文采用hive环境运行SQL,使用jupyter lab运行pandas。...假设要实现筛选订单时间中包含“08-01”的订单。pandas和SQL代码如下所示,注意使用like时,%是通配符,表示匹配任意长度的字符。 ?...如果你认真读了本文,会发现有一些情况下,Hive SQL比pandas更方便,为了达到同样的效果,pandas可能要用一种全新的方式来实现。
数据准备 SQL计算周同比和日环比 pandas计算周同比和日环比 在之前的三篇系列文章中,我们对比了pandas和SQL在数据方面的多项操作。...第三篇文章一场pandas与SQL的巅峰大战(三)围绕日期操作展开,主要讨论了日期获取,日期转换,日期计算等内容。 本篇文章一起来学习常见的应用实例:如何在SQL和pandas中计算同环比。...同比是指和上个周期内同期数据的对比,可以是年同比,月同比,周同比等。环比是指连续两个统计周期内数据的对比,可以是日环比,周环比,月环比等。工作中常见的是周同比和日环比。...至此,我们完成了SQL和pandas中对于周同比和日环比计算的过程。 ◆ ◆ ◆ ◆ ◆ 小结 本篇文章中,我们使用SQL和pandas的多种方法对常见的周同比和日环比进行计算。...推荐阅读: 1.一场pandas与SQL的巅峰大战 2.一场pandas与SQL的巅峰大战(二) 3.一场pandas与SQL的巅峰大战(三) 4.常用Hive函数的学习和总结
sql中的case when的功能是实现单列或者多列的条件统计,其实Pandas也可以实现的,比如万能的apply方法,就是写起来复杂一些,没有sql case when那么直观。...这里如果用sql来查询的话,使用case when就很简单明了。...,apply将该判断函数应用到数据集上,就能实现类似sql case when的功能。...除了pandas apply能实现case when的功能外,numpy的select方法也能搞定,而且更为通用、简洁,建议试试。...除了这两种,其实pandas种还有不少能实现的途径,但没必要尝试,因为这两种相对通用便捷,且符合python哲学。
第四篇文章一场pandas与SQL的巅峰大战(四)学习了在MySQL,Hive SQL和pandas中用多种方式计算日环比,周同比的方法。...第六篇文章一场pandas与SQL的巅峰大战(六)我们主要总结学习了SQL和pandas中计算日活和多日留存率的方法。 以上的几篇我们都是在从“对立”的角度讨论pandas与SQL。...pandas操作MySQL数据库 这一部分我们来看下pandas直接操作数据库的例子,主要学习read_sql和to_sql的用法。...对不熟悉pandas的朋友,也可以用SQL来操作dataframe,而SQL和pandas中的数据也能方便进行转换。...祝所有朋友新的一年多多发财,平安顺意。 顺便说一下,后续公众号的文章,我依然会尽力写原创,可能会更多采用独立单篇的方式,条件成熟时也会写系列文章。
在前两篇文章中,我们从多个角度,由浅入深,对比了pandas和SQL在数据处理方面常见的一些操作。...具体来讲,第一篇文章一场pandas与SQL的巅峰大战涉及到数据查看,去重计数,条件选择,合并连接,分组排序等操作。...第二篇文章一场pandas与SQL的巅峰大战(二)涉及字符串处理,窗口函数,行列转换,类型转换等操作。您可以点击往期链接进行阅读回顾。...本文依然沿着前两篇文章的思路,对pandas和SQL中的日期操作进行总结,其中SQL采用Hive SQL+MySQL两种方式,内容与前两篇相对独立又彼此互为补充。一起开始学习吧!...,我们通常需要先转换为10位年月日的格式,再把中间的横杠替换掉,就可以得到8位的日期了。
本文旨在对比SQL,说明如何使用Pandas中执行各种SQL操作。真的!好像对比起来,学习什么都快了。 ? 本文大纲 ?...注意:调用不带列名列表的DataFrame将显示所有列(类似于SQL的 *)。...在SQL中,您可以添加一个计算列: SELECT *, "小费"/"总费用" as "小费占比" FROM df LIMIT 5; 对于pandas,可以使用DataFrame.assign()的方法追加新列...4.group by分组统计 在Pandas中,SQL的GROUP BY操作是使用类似命名的groupby()方法执行的。...注意,在pandas代码中我们使用了size()而不是count()。这是因为count()将函数应用于每一列,并返回每一列中的记录数。
作者:黄同学 本文的所有演示数据,均是基于下方的四张表。 下面这四张表大家应该不陌生,这就是网传50道经典MySQL面试题中使用到的几张原表。...简介 pandas中的DataFrame是一个二维表格,数据库中的表也是一个二维表格,因此在pandas中使用sql语句就显得水到渠成,pandasql使用SQLite作为其操作数据库,同时Python...这里有一点需要注意的是:使用pandasql读取DataFrame中日期格式的列,默认会读取年月日、时分秒,因此我们要学会使用sqlite中的日期处理函数,方便我们转换日期格式,下方提供sqlite中常用函数大全...sqlite函数大全:http://suo.im/5DWraE 导入相关库: import pandas as pd from pandasql import sqldf 声明全局变量的2种方式 ①...写几个简单的SQL语句 ① 查看sqlite的版本 student = pd.read_excel("student.xlsx") pysqldf = lambda q: sqldf(q, globals
连接sqlalchemy 模块连接mysql数据库,pandas 模块可解析数据,json模块转换数据为json格式。...def select(db,sql): engine = db sql = sql # read_sql_query的两个参数: sql语句, 数据库连接 df = pd.read_sql_query...(sql, engine) #使用pandas查询数据库 return df def basedb(): Test = create_engine("mysql+pymysql://账号...:密码@ip:端口/数据库", #数据库连接信息 echo=True) return Test def getdate(keystr,table...df=select(db,sql) #执行sql的函数 try: jilu = df.iloc[0] #选择第一条记录信息,基于索引位来选取数据集 valuestr
导读:Pandas 是一个强大的分析结构化数据的工具集,它的使用基础是 Numpy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提供数据清洗功能。...本文收集了 Python 数据分析库 Pandas 及相关工具的日常使用方法,备查,持续更新中。...作者:李庆辉 来源:大数据DT(ID:hzdashuju) 缩写说明: df:任意的 Pandas DataFrame 对象 s:任意的 Pandas Series 对象 注:有些属性方法 df 和...表/库导入数据 pd.read_sql(query, connection_object) # 从 JSON 格式的字符串导入数据 pd.read_json(json_string) # 解析 URL...df2的列执行SQL形式的join df1.join(df2,on=col1,how='inner') # 用 key 合并两个表 df_all = pd.merge(df_sku, df_spu,