首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

给定n的循环的时间复杂度

循环的时间复杂度是指循环体内代码的执行次数与问题规模n之间的关系。给定n的循环的时间复杂度可以根据循环的类型来确定。

  1. 对于普通的for循环:
    • 时间复杂度为O(n),表示循环体内的代码会执行n次,与问题规模n成正比。
    • 例如,计算1到n的累加和的代码:
    • 例如,计算1到n的累加和的代码:
    • 推荐的腾讯云相关产品:云服务器CVM,产品介绍链接地址:https://cloud.tencent.com/product/cvm
  • 对于嵌套的循环:
    • 时间复杂度为O(n^2),表示循环体内的代码会执行n^2次,与问题规模n的平方成正比。
    • 例如,计算1到n的所有数的乘积的代码:
    • 例如,计算1到n的所有数的乘积的代码:
    • 推荐的腾讯云相关产品:云函数SCF,产品介绍链接地址:https://cloud.tencent.com/product/scf
  • 对于递归循环:
    • 时间复杂度取决于递归的深度和每次递归的规模。
    • 例如,计算n的阶乘的代码:
    • 例如,计算n的阶乘的代码:
    • 推荐的腾讯云相关产品:云函数SCF,产品介绍链接地址:https://cloud.tencent.com/product/scf

总结:给定n的循环的时间复杂度可以根据循环的类型来确定,普通的for循环的时间复杂度为O(n),嵌套的循环的时间复杂度为O(n^2),递归循环的时间复杂度取决于递归的深度和每次递归的规模。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

时间复杂度O(n)和空间复杂度

查了很多,对于计算空间复杂度还是没有一个很好的理解,因为有些说需要把算法内部使用的全局变量算在内,有些说只需要把算法内部变量算在内,有些说需要循环几次,每一次的临时变量需要叠加算,有些又说临时变量会被销毁...,所以时间复杂度是O(n)。...(i + j); // 语句执行n*m次 }} 同样的,这边执行次数是n*m,用数学的方式n和m趋于无穷大的时候,n≈m,于是执行次数就是n^2,所以时间复杂度是O(n^2)。...当然还有n的三次方、四次方等。 算法还有很多很多的时间复杂度,你要是数学学得好,你就可以找出更多的时间复杂度,本人要是高中时候还能多找几个,现在只能理解这几个了。...而时间复杂度也是能比较的,单以这几个而言: O(1)n)n²)n³) 一个算法执行所消耗的时间理论上是不能算出来的,我们可以在程序中测试获得。

77610

求m的n次方(优化时间复杂度)

卷哥心想这问的什么问题,过流程的吗? 面试官眉头紧皱: 看面试官的意思是对卷哥解法的时间复杂度不太满意,卷哥想了15分钟没想出来; 卷哥:卒 题解 正常循环求m的n次方,时间复杂度为O(n)。...如果为奇数n则时间复杂度为O(n/2-1),偶数n就是O(n/2) 代码如下: public int process(int m,int n){ int index = n/2,...= 0){ result *= m; } return result; } 那还有没有时间复杂度更低的算法?...上面我们是固定的两个值缩减,效率固定了就是O(n/2),我们再分析一下:求平方的m值是固定的,那我们能不能不固定两个值缩减,反正值固定,每一次平方后n/2这样对数的算法效率就很快了。...} 步骤图: 最后r x base = 19683就等同我们上图余出来一个单个m值需要与结果值进行平方 这种方式的时间复杂度为O(logn),相对时间复杂度更低。

86840
  • 常见算法的时间复杂度 Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…

    虽然我不懂算法,但是我知道关于算法的时间复杂度。比如:Ο(1)、Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)、Ο(n3)…Ο(2n)、Ο(n!)等所代表的意思!...我在面试的时候,就发现有人连 O(1) 代表什么意思都搞不清楚! 关于时间复杂度,有一个公式:T (n) = Ο(f (n))。怎么解释这个公式呢?特别麻烦,我目前还没有想到比较简单的介绍方式。...相关算法举例:哈希算法(不考虑冲突的情况),无论在数据量多么大,都是 O(1)。 ? O(n) O(n) 理解起来也很简单,就是算法的时间复杂度随着数据量的增大几倍,耗时也增大几倍。...常见的算法举例:遍历算法。 ? O(n^2) 就代表数据量增大 n 倍时,耗时增大 n 的平方倍,这是比线性更高的时间复杂度。...常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)。 ? 上图是常见的算法时间复杂度举例。

    8.6K21

    时间复杂度中的log(n)底数到底是多少?

    其实这里的底数对于研究程序运行效率不重要,写代码时要考虑的是数据规模n对程序运行效率的影响,常数部分则忽略,同样的,如果不同时间复杂度的倍数关系为常数,那也可以近似认为两者为同一量级的时间复杂度...假设有底数为2和3的两个对数函数,如上图。当X取N(数据规模)时,求所对应的时间复杂度得比值,即对数函数对应的y值,用来衡量对数底数对时间复杂度的影响。...用文字表述:算法时间复杂度为log(n)时,不同底数对应的时间复杂度的倍数关系为常数,不会随着底数的不同而不同,因此可以将不同底数的对数函数所代表的时间复杂度,当作是同一类复杂度处理,即抽象成一类问题。...排序算法中有一个叫做“归并排序”或者“合并排序”的算法,它用到的就是分而治之的思想,而它的时间复杂度就是N*logN,此算法采用的是二分法,所以可以认为对应的对数函数底数为2,也有可能是三分法,底数为3...说明:为了便于说明,本文时间复杂度一概省略 O 符号。

    2.9K50

    又一个,时间复杂度为O(n)的排序!

    桶排序(Bucket Sort),是一种时间复杂度为O(n)的排序。 画外音:百度“桶排序”,很多文章是错误的,本文内容与《算法导论》中的桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内的元素链表空间; 总的来说,空间复杂度是O(n)。...1)桶X内的所有元素,是一直有序的; (2)插入排序是稳定的,因此桶内元素顺序也是稳定的; 当arr[N]中的所有元素,都按照上述步骤放入对应的桶后,就完成了全量的排序。...桶排序的伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应的桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度为O(n)的排序; (2)桶排序,是一种稳定的排序; (3)桶排序,适用于数据均匀分布在一个区间内的场景; 希望这一分钟,大家有收获。

    1K30

    究竟为什么,快速排序的时间复杂度是n*lg(n)? | 经典面试题

    画外音:这里的有限次操作,是指不随数据量的增加,操作次数增加。 规则二:“for循环”的时间复杂度往往是O(n)。 例子:n个数中找到最大值。...规则三:“树的高度”的时间复杂度往往是O(lg(n))。 分析:树的总节点个数是n,则树的高度是lg(n)。 在一棵包含n个元素二分查找树上进行二分查找,其时间复杂度是O(lg(n))。...对一个包含n个元素的堆顶元素弹出后,调整成一个新的堆,其时间复杂度也是O(lg(n))。 第二大类:组合规则 通过简单规则的时间复杂度,来求解组合规则的时间复杂度。 例如:n个数冒泡排序。...+= i; return result; } 根据简单规则,for循环,sum的时间复杂度是O(n)。...总结 for循环的时间复杂度往往是O(n) 树的高度的时间复杂度往往是O(lg(n)) 二分查找的时间复杂度是O(lg(n)),快速排序的时间复杂度n*(lg(n)) 递归求解,未来再问时间复杂度,通杀

    1.5K30

    c++ 字典顺序生成全排列,蛮力算法时间复杂度 Θ(n*n!)

    字典顺序全排列 {1,2,3}     {1,3,2}     {2,1,3}     {2,3,1}     {3,1,2}     {3,2,1}  解:①  只要让 nextPermutation 不断的循环下去...,  就可以不断的寻找下一个最大排列,其中必须给循环一个停止条件           ②  {1,2,3}全排列停止条件{3,2,1} ,    因为 {3,2,1}    字典顺序下一个最大排列   ...的位置 也就是指向 2 的红色箭头所属的位置           循环继续,一直运行到循环的停止条件       ③.2  期间遍历每个排列中的从右到左相邻两元素,不满足第一个 “ 信号由(无或弱)到强突然转弱...  ” 继续                如果满足从右到左寻找第一个 “ 信号由(无或弱)到强突然转弱  ” 的位置 也就是指向 1 的红色箭头所属的位置                循环继续,一直运行到循环的停止条件...*Θ(n) 比较次数             j = n - 1;         }         /*遍历到最小排列的时候结束*/         while (arr[j] > arr[

    87720

    时间复杂度的计算

    时间复杂度 方法: 1、按效率从高到低排列: 2、取最耗时的部分 4个便利的法则: 对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个循环的时间复杂度为 O(n×...\n"); // 循环体时间复杂度为 O(1) }} 时间复杂度为:O(n×1) 对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c…...,则这个循环的时间复杂度为 O(n×a×b×c…)。...\n"); // 循环体时间复杂度为 O(1) } }} 时间复杂度为:O(1×n×n),即O(n²) 对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度...\n"); } } 时间复杂度为:O(n²) 对于条件判断语句,总的时间复杂度等于其中时间复杂度最大的路径 的时间复杂度。

    85630

    Python-排序-有哪些时间复杂度为O(n)的排序算法?

    前几篇文章介绍了几个常用的排序算法:冒泡、选择、插入、归并、快速,他们的时间复杂度从 O(n^2) 到 O(nlogn),其实还有时间复杂度为 O(n) 的排序算法,他们分别是桶排序,计数排序,基数排序...这个问题非常好,原因是这样的,当桶的个数 m 接近与 n 时,log(n/m) 就是一个非常小的常数,在时间复杂度时常数是可以忽略的。...比如极端情况下桶的个数和元素个数相等,即 n = m, 此时时间复杂度就可以认为是 O(n)。...根据每一位来排序,我们利用上述桶排序或者计数排序,它们的时间复杂度可以做到 O(n)。如果要排序的数据有 k 位,那我们就需要 k 次桶排序或者计数排序,总的时间复杂度是 O(k*n)。...O(n),因此使用基数排序对类似这样的数据排序的时间复杂度也为 O(n)。

    1.5K20

    ——算法的时间复杂度和空间复杂度

    2.时间复杂度 1.时间复杂度的概念 时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。...一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。 找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。...return sum; } 2.旋转数组 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。...,显然我们需要两层循环,当cout==numsSize的时候,就可以结束遍历了。...虽然是两重循环,但是时间复杂度是O(N),因为每个元素只被遍历一次。

    12210

    时间复杂度o(1), o(n), o(logn), o(nlogn)

    1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 2、时间复杂度为O(1)。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话) 3、时间复杂度为O(n)。 就代表数据量增大几倍,耗时也增大几倍。 比如常见的遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...4、时间复杂度为O(logn)。 当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。

    1.4K10

    算法的时间复杂度和空间复杂度

    算法的复杂度         算法的复杂度就是用来衡量一个算法的效率,一般由两个指标构成,时间复杂度和空间房租啊都。时间复杂度在乎算法的运行快慢,空间复杂度衡量一个算法运行时所需要的额外空间大小。...时间复杂度 概念         时间复杂度是一个函数,它用于定量描述一个算法的运行时间,一个算法所消耗的时间是不可以算出来的,只有放到机器上才能得知,但是很麻烦。...时间复杂度是一个分析方法 ,用于分析一个算法的运行相对时间,一个算法的时间与其中的语句执行次数成正比例,算法中基本操作执行次数,就是算法的时间复杂度。        ...printf("%d\n",count); }          Func1的执行次数是 N^2 + 2* N + 10         那么它的时间复杂度就是O(N ^ 2) 大O的渐进表示法        ...空间复杂度         空间复杂度是用来衡量一个算法占用的额外的空间的大小。这个与时间复杂度类似,也用大O渐进表示法。

    11810

    算法的时间复杂度与空间复杂度

    二、时间复杂度的计算 表示方法 我们一般用“大O符号表示法”来表示时间复杂度:T(n) = O(f(n)) n是影响复杂度变化的因子,f(n)是复杂度具体的算法。...所以它的时间复杂度其实是O(n); 对数阶O(logN) int i = 1; while(i n) { i = i * 2; } 可以看到每次循环的时候 i 都会乘2,那么总共循环的次数就是...O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是O(nlogN)了。...n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。...n,后面虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)。

    1.6K10
    领券