首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    直方图与核密度估计

    直方图是一种经常被用于统计的图形表达形式,简单来说它的功能就是用一系列的样本数据,去分析样本的分布规律。而直方图跟核密度估计(Kernel Density Estimation,KDE)方法的主要差别在于,直方图得到的是一个离散化的统计分布,而KDE方法得到的是一个连续的概率分布函数。如果将得到的分布重新用于采样,两者都可以结合蒙特卡洛方法实现这样的功能,但是KDE的优点在于它得到的结果是可微分的,那么就可以应用于有偏估计的分子动力学模拟中,如元动力学(Meta Dynamics)方法。这里主要用Python实现一个简单的KDE函数的功能,也顺带介绍一下Numpy和Matplotlib中关于直方图的使用方法。

    01

    Memory-augmented Deep Autoencoder for Unsupervised Anomaly D

    深度自编码在异常检测中得到了广泛的应用。通过对正常数据的训练,期望自编码器对异常输入产生比正常输入更高的重构误差,以此作为识别异常的判据。然而,这一假设在实践中并不总是成立。有人观察到,有时自动编码器“概括”得很好,也能很好地重建异常,导致异常的漏检。为了减轻基于自编码器的异常检测的这个缺点,我们建议使用内存模块来增加自编码器,并开发一种改进的自编码器,称为内存增强自编码器,即MemAE。对于给定的输入,MemAE首先从编码器获取编码,然后将其作为查询来检索与重构最相关的内存项。在训练阶段,内存内容被更新,并被鼓励表示正常数据的原型元素。在测试阶段,学习记忆是固定的,从正常数据中选取少量记忆记录进行重构。因此,重建将趋向于接近一个正常的样本。从而增强异常的重构误差,用于异常检测。MemAE没有对数据类型的假设,因此适用于不同的任务。在各种数据集上的实验证明了该备忘录具有良好的泛化性和较高的有效性。

    01

    ECCV 2022|码流信息辅助的压缩视频超分框架

    目前网络上的电影、网络广播、自媒体视频等大部分是分辨率较低的压缩视频,而智能手机、平板电脑、电视等终端设备正逐渐配备 2K、4K 甚至 8K 清晰度的屏幕,因此端侧的视频超分辨率(VSR)算法引起越来越广泛的关注。与图像超分辨率(SISR)相比,视频超分辨率(VSR)可以通过沿视频时间维度利用邻近帧的信息来提高超分辨率的效果。视频超分辨率算法大致可以分为两类:基于滑窗的视频超分算法(Sliding-window)和基于循环神经网络的视频超分算法(Recurrent VSR)。基于滑窗的视频超分算法会重复的提取邻近帧的特征,而基于循环神经网络的视频超分辨率算法避免了重复的特征提取,还可以高效的传递长期时间依赖信息,鉴于端侧运算单元和内存有限的情况来说是一个更具潜力的方案。在视频超分中,视频帧之间的对齐对超分辨率性能有着重要的影响。目前的视频超分算法通过光流估计、可形变卷积、注意力和相关性机制等方式来设计复杂的运动估计网络来提升视频超分的性能。而目前商用终端设备很难为视频超分辨率算法提供足够的计算单元和内存来支撑视频帧之间复杂的运动估计以及大量的冗余特征计算。

    02
    领券