首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

逻辑回归:成本函数没有减少

逻辑回归是一种用于解决分类问题的机器学习算法。它通过将输入特征与权重相乘,并将结果传递给一个激活函数(通常是sigmoid函数),来预测样本属于某个类别的概率。

成本函数是逻辑回归模型中用于衡量预测结果与实际结果之间差异的函数。常用的成本函数是交叉熵损失函数。通过最小化成本函数,我们可以调整模型的参数,使得模型的预测结果更接近实际结果。

如果成本函数没有减少,可能有以下几个原因:

  1. 数据问题:可能是因为数据集中存在噪声、异常值或者缺失值,导致模型无法准确地拟合数据。解决方法可以是数据清洗、异常值处理或者使用其他预处理技术。
  2. 模型问题:可能是选择的模型不适合解决当前的分类问题,或者模型的参数初始化不合适。可以尝试使用其他分类算法或者调整模型的超参数。
  3. 特征问题:可能是选择的特征不具有足够的信息量,无法准确地区分不同的类别。可以尝试添加更多的特征或者进行特征工程来提取更有用的特征。
  4. 训练问题:可能是训练过程中出现了问题,例如学习率设置不合理、迭代次数不足或者使用的优化算法不适合当前的问题。可以尝试调整这些参数来改善模型的性能。

对于逻辑回归算法,腾讯云提供了云机器学习平台(https://cloud.tencent.com/product/tiems)和人工智能计算平台(https://cloud.tencent.com/product/tia)等相关产品,可以帮助用户进行模型训练和部署。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

逻辑回归与正则化 逻辑回归、激活函数及其代价函数

逻辑回归、激活函数及其代价函数 线性回归的可行性 对分类算法,其输出结果y只有两种结果{0,1},分别表示负类和正类,代表没有目标和有目标。...对于分类方法,这种拟合的方式极易受到分散的数据集的影响而导致损失函数的变化,以至于对于特定的损失函数,其阈值的设定十分困难。...设 h_θ (x)=g(θ^T x) , 其中 g(z)=\frac{1}{(1+e^{−z} )} , 称为逻辑函数(Sigmoid function,又称为激活函数,生物学上的S型曲线) h_θ...这个不等式函数将整个空间分成了y=1 和 y=0的两个部分,称之为决策边界。...激活函数的代价函数 在线性回归中的代价函数: J(θ)=\frac{1}{m}∑_{i=1}^m \frac{1}{2} (h_θ (x^{(i)} )−y^{(i)} )^2 令 Cost(hθ

22710

逻辑回归(LR),损失函数

什么是逻辑回归 逻辑回归是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?不用担心,伟大的数学家已经为我们找到了一个方法。...损失函数是什么 逻辑回归的损失函数是 log loss,也就是对数似然函数函数公式如下: ? 公式中的 y=1 表示的是真实值为1时用第一个公式,真实 y=0 用第二个公式计算损失。...逻辑斯特回归为什么要对特征进行离散化。 非线性!非线性!非线性!...当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问; 简化模型:特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。 9....逻辑回归的目标函数中增大L1正则化会是什么结果。 所有的参数w都会变成0。 10. 代码实现 ?

17.3K00
  • 逻辑回归和sigmod函数的由来

    逻辑回归又叫对数几率回归,是一种广义线性回归分析模型。虽然名字里有回归,但其实是分类模型,常用于二分类。 这篇文章是逻辑回归三部曲中的第一部,介绍逻辑回归的由来和为什么会使用sigmod函数。...现在来推导广义线性函数g(y) 由于 ? 而 ? 且E(T(Y))=g(y),从而可以推导出广义线性函数(逻辑回归函数)的表达式: ?...从上面的推导可以看出逻辑回归的因变量g(y)就是伯努利分布中样本为1的概率。所以把线性回归中参数求出来,代入逻辑回归函数的表达式中,可以预测样本为1的概率。...至此,可以得出结论,当因变量服从伯努利分布时,广义线性模型就为逻辑回归。所以不是因为逻辑函数有很多很好的性质而选择了逻辑函数,而是假设因变量服从伯努利分布推导出了逻辑函数。...恰好这个函数满足连续、任意阶可导等很多优良性质。从而让逻辑回归成为广泛应用的一个基础模型。 四、逻辑回归优缺点 1 逻辑回归优点 ①容易使用和解释。由于逻辑回归不像神经网络那样有一个黑匣子。

    2.4K62

    python 逻辑回归_python实现逻辑回归

    参考链接: 了解逻辑回归 Python实现 逻辑回归定义   logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。...逻辑回归为发生概率除以没有发生概率再取对数,且因变量为二分类的分类变量或某事件的发生率。   例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。...***摘自百度百科   逻辑回归的使用   逻辑回归属于回归算法,但个人感觉这是一个分类的算法,可以是二分类,或者多分类,多分类不太好解释,而且如果自变量中含有分类变量,需要我们转化成虚拟变量(也叫哑元变量...逻辑回归的实现   下面是一个我在网上查看到的二分类逻辑回归案例,数据是自己生成的,稍微改了几处地方,使用python3,或者anaconda。  ...此图代表了逻辑回归的生长曲线,趋势基本是一致的;   机器学习分类算法有很多,回归模型我目前常用的就是多元回归逻辑回归了,都是监督学习类别。

    1.4K00

    逻辑回归

    1 逻辑回归的介绍和应用 1.1 逻辑回归的介绍 逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。...逻辑回归模型的优劣势: 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低; 缺点:容易欠拟合,分类精度可能不高 1.2 逻辑回归的应用 逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学...条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。...逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。...很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

    48510

    逻辑回归

    2 逻辑回归 2.1 从线性回归逻辑回归 分类问题可以通过 线性回归+阈值 去解决吗?...image 分类问题 在有噪声点的情况下,阈值偏移大,健壮性不够 image 2.2 逻辑回归决策边界 在逻辑回归(Logistic Regression)里,通常我们并不拟合样本分布,而是确定决策边界...下面为各式各样的决策边界 image 线性决策边界 image image 非线性决策边界 image 2.3 逻辑回归损失函数 损失函数与正则化 依旧存在过拟合问题,决策边界可能“抖动很厉害”!...image 要点总结 逻辑回归 线性回归+阈值 解决分类问题鲁棒性不OK Sigmoid函数与决策边界 Sigmoid函数:压缩至0-1之间 根据阈值,产生对应的决策边界 损失函数 最大似然到对数损失...工程应用经验 3.1 逻辑回归 VS 其他模型 LR 弱于 SVM/GBDT/RandomForest... ?

    95530

    逻辑回归

    Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。...进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面。 二值型输出分类函数 我们想要的函数应该是: 能接受所有的输入然后预测出类别。...因此,为了实现 Logistic 回归分类器,我们可以在每个特征上都乘以一个回归系数(如下公式所示),然后把所有结果值相加,将这个总和代入 Sigmoid 函数中,进而得到一个范围在 0~1 之间的数值...基于最优化方法的回归系数确定 Sigmoid 函数的输入记为 z ,由下面公式得到: ? 如果采用向量的写法,上述公式可以写成  ?  ...如果目标函数是似然函数(Likelihood function),就是要最大化似然函数来求函数的最大值,那就用梯度上升。在逻辑回归中, 损失函数和似然函数无非就是互为正负关系。

    45320

    线性回归逻辑回归

    在读研期间,一直在帮导师做技术开发,甚至偶尔做一做美工(帮导师和实验室博士生画个图啥的),算法还是较少接触的,其实,我发现,算法还是蛮好玩的,昨晚看了B站一个美女算法工程师讲了线性回归逻辑回归两种算法...概念1:回归与分类问题。 1)回归回归问题模型倾向于一个输入点X对应着一个输出点Y。咱们可以抽象的想象成小学时候学的(Y=aX+b)方程,即X与Y一一对应。...3)总结(3部) 1.构造预测函数(也就是构造那个拟合的直线,这里是多维线性回归) 2.构造损失函数 3.最小化损失函数 ?...概念3:逻辑回归详解。 细说:逻辑回归是在线性回归的基础上嵌套了一个sigmoid函数,目的是将线性回归函数的结果映射到sigmoid函数中(如下图)。...逻辑回归的出发点就是从这来的。 ?

    84310

    逻辑回归中的代价函数—ML Note 36

    我们知道了其实逻辑回归进行分类问题,实质上是我们先有一个模型方程但是不知道方程的参数,我们通过确定参数来确定方程的具体的形式也就是决策边界,通过这个决策边界来对一堆东西进行分类。...上图中这个函数,其实很容易理解了,我们用上面那个式子衡量某参数下的假设函数对自变量预测值和实际值之间的差距大小,然后把m个差距求和。 到了逻辑回归这里,其实代价函数就变简单了,为什么呢?...这样凹凸不平的函数,我们在使用梯度下降法求解最小值的时候是极易陷入局部最优解的,非常讨厌!我们要想想另外更好的代价函数形式。 我们非常巧妙的构造以下这种形式的逻辑回归代价函数, ?...通过这样一个代价函数,我们就使得预测值越接近于实际值时代价函数的取值越小、反之越大,而且也很光滑。这样的代价函数正是我们想要的。 总结 逻辑回归的代价函数到底是怎么想出来的,已经超出了这门课的范畴。...但是,因为前人的工作,我们已经知道有这样一个函数可以作为我们逻辑回归的代价函数了,那具体该怎样在这样的代价函数的基础上通过梯度下降法求得最优的参数呢?要解答这个问题还要往下接着看。 ?

    48340

    大话逻辑回归

    如果只能学习一个算法的话,我选择逻辑回归。 讲个笑话,逻辑回归既不讲逻辑,也不是回归。 本文目的是以大白话的方式介绍逻辑回归。我们先简要以公式的方式回顾什么是逻辑回归,如何训练。...逻辑回归的数学描述 什么是逻辑回归 逻辑回归,是个二分类算法,即给定一个输入,输出true/false判断是否属于某个类别,同时还能给出属于这个类别的概率。...为什么是这个sigmoid函数 至此,我们成功得到了逻辑回归的训练方法。但是,有两个问题,我们忽略了。(1)为什么在线性t=wx+b的基础上又套了一层sigmoid函数,也称logistic函数?...为什么使用sigmoid函数? 这篇文章解释的还不错。大体可以回归到David Cox在1958年首先提出逻辑回归算法的思路上来。...总之,这个函数充满了数学美。 逻辑回归大白话 前面讲了一大堆公式。这里我们对逻辑回归进行大白话解释,力求让外行小白也能听懂。

    98810

    逻辑回归算法

    逻辑回归(Logistic Regression)是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。它根据给定的自变量数据集来估计事件的发生概率。...变量的范围在0和1之间,通常用于二分类问题,最终输出的预测是一个非线性的S型函数,称为logistic function, g()。...它是基于自我引用和递归定义的思想,将逻辑和计算理论相结合,形成了一种强有力的推理工具。例如,下图为逻辑回归曲线图,显示了考试通过概率与学习时间的关系。...通过逻辑回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。...需要注意的是,逻辑递归的推理过程可能面临一些挑战,如悖论和无限循环等。因此,在使用逻辑递归进行推理时,需要注意对递归定义和推理规则的合理限制,以避免逻辑矛盾和无穷循环的问题。

    15010

    机器学习系列8:逻辑回归的代价函数

    还记得我们原来在线性回归中学过的代价函数吗? ? 我们把黄色部分用函数的形式来表示: ? 如果我们在逻辑回归中也用这个代价函数去拟合参数行不行呢?答案是不行。...因为这个代价函数逻辑回归中的图像是这个样子的: ? 这是一个非凸函数,有多个局部最优解,运用梯度下降算法并不会收敛到它的全局最优解,这样就达不到我们预期的效果。那该怎么办呢?...让我们来学习逻辑回归中的代价函数吧。 逻辑回归的代价函数是这样的: ? 让我们具体的看一下它的工作原理。 当 y = 1 时,Cost(hθ(x), y) 函数的图像是一个对数函数,如下: ?...你是不是想到了我们之前在线性回归中学到的减小代价函数去拟合参数 θ 的方法——梯度下降。在逻辑回归中,我们依然可以运用这个方法。 ?...与之前线性回归不同的是,这里的 hθ (x) 变成了逻辑回归算法的假设函数 hθ (x)

    80220

    【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)

    逻辑回归应用场景 在KNN算法中直接可以得出预测结果,但是如果想输出预测结果,还要输出预测结果的概率,这时候就需要使用逻辑回归解决问题。...应用场景 逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。...关于逻辑回归的阈值是可以进行改变的,比如上面举例中,如果你把阈值设置为0.6,那么输出的结果0.55,就属于B类。 在学习逻辑回归之前,我们用均方误差来衡量线性回归的损失。...在逻辑回归中,当预测结果不对的时候,我们该怎么衡量其损失呢? 我们来看下图(下图中,设置阈值为0.6), 那么如何去衡量逻辑回归的预测结果与真实结果的差异? 首先我们进行逻辑斯特回归函数的表示学习。...增加一个负号,将其变为最小化问题,公式再次转换如下: 此时,得到逻辑回归的对数似然损失函数. 如上述案例,我们就带入上面那个例子来计算一遍,就能理解意义了。

    14210

    「R」逻辑回归

    问题 你想要运用逻辑回归分析。 方案 逻辑回归典型使用于当存在一个离散的响应变量(比如赢和输)和一个与响应变量(也称为结果变量、因变量)的概率或几率相关联的连续预测变量的情况。...x可以预测y一样,只不过是两个连续变量,而逻辑回归中被预测的是离散变量),逻辑回归可能适用。...# 执行逻辑回归 —— 下面两种方式等效 # logit是二项分布家族的默认模型 logr_vm <- glm(vs ~ mpg, data=dat, family=binomial) logr_vm...# 执行逻辑回归 logr_va <- glm(vs ~ am, data=dat, family=binomial) # 打印模型信息 logr_va #> #> Call: glm(formula...# 执行逻辑回归,下面两种方式等效 logr_vmai <- glm(vs ~ mpg * am, data=dat, family=binomial) logr_vmai <- glm(vs ~ mpg

    57020

    逻辑回归模型

    前言 线性回归模型可以用于回归模型的学习,当我们需要用线性模型实现分类问题比如二分类问题时,需要用一个单调可微函数将线性回归的连续结果映射到分类回归真实标记的离散值上。...但是线性回归模型产生的预测值是实值z,因此我们需要将实值 ? 转化为 的离散值,最理想的函数就是“单位阶跃函数”unit-step function: ? 即当预测值 ?...然而单位跃阶函数本身不连续,我们希望找到能在一定程度上近似单位阶跃函数的“替代函数”,并希望它单调可微。对数几率函数logistic function正好能满足这个要求: ?...逻辑回归优点 直接对分类可能性建模,无需实现假设数据分布,这样就避免了假设分布不准确所带来的问题 不仅能够预测类别,而且可以得到不同分类的概率预测,对许多需利用概率辅助决策的任务很有用。...对率函数是任意阶可导的凸函数,有很好的数学性质

    56610

    逻辑回归算法

    说到逻辑回归(Logistic Regression),其实他解决的并不是回归问题(Regression),而是分类问题(Classification)。...这时候我们就需要一个特殊的函数来近似的处理离散的分类问题,这就引入了我们著名的逻辑函数(Logistic Function),又称Sigmoid函数: S(t)=\frac{1}{1+e^{-\theta...决策边界(Decision Boundary) 使用了逻辑函数作为拟合函数后,我们就可以写出我们的预测函数了: h_\theta(x)=S(\theta^Tx) S函数里面的其实就是一个线性方程,很明显...没错,最终的表达式跟线性回归的计算方法几乎一模一样(注意少了一个分母上的m)!这就是Sigmoid函数的强大之处。...优化算法 对于逻辑回归算法,有一些高级的优化算法比如Conjugate gradient、BFGS、L-BFGS等,这些跑起来快,但是难学。。。这里就不提了。

    84220
    领券