概念 个人理念里的人工智能,最终是对某种“函数”的拟合,这种函数可能是一维的,二维的,多维的。但这个“函数”不是推导出来的公式,而是一个黑盒子,有点类是图灵机的感觉。...通过一系列的输入,训练这个盒子,不断调参修正得到正确的拟合函数。 实践 最简单的线性函数开始, 拟合 y= k*x + b 。...import matplotlib.pyplot as plt from paddle.io import DataLoader, Dataset k = 3.2 b = 10 # 生成测试数据...x = [np.random.randn() for i in range(5000)] y = [k * i + b for i in x] # 定义数据集 class LineDataSet(
问题描述 采用MATLAB、Python对数据拟合时(函数形式如y=1-c*exp(k*x^t)),程序有时能够完美运行,给出你想要的结果,然而有时候竟然报错,运行不出结果,或者给出的结果明显不对,让你时常怀疑电脑是不是中病毒了...,,为什么交给电脑同样的任务(拟合求参数),电脑还需要根据自身心情来决定是否给你想要的结果?...于此同时,针对疲劳裂纹扩展具体的工程问题,对最小二乘法拟合(疲劳裂纹扩展速率以及应力强度因子)实验数据的基本过程进行简要介绍,具体如下: 拟合结果明显有问题:图中黑色点点为数据点,蓝色为MATLAB工具箱拟合结果...解决办法有: 修改初始点位置,限制指数 n 的范围可以大大改善该问题 添加方程参数(还未能解释为何添加的参数会改善拟合效果,甚至最后发现添加的参数对拟合函数值基本没影响) 附录:特定问题采用最小二乘法拟合的基本过程...u, v和w,实现实验数据的拟合。
主要贡献 使用非对称卷积来显式地增强标准正方形的卷积核的表征能力,非对称卷积可以融合到正方形卷积核中,而不需要额外的推理时间计算。 将ACB作为一个新颖的CNN结构构建模块。...1、CIFAR数据集 ? 2、ImageNet数据集 ? ? 上述内容,如有侵犯版权,请联系作者,会自行删文。
对应于图中的函数,我们给定的是: \[f(x)=2x+3 \] 生成散点数据集 加噪声的方法在get_data函数中体现,其中生成数据集的方法为:先在 [-10,10] 的范围内生成一系列的随机 x 自变量值...损失函数值越小,代表结果就越好,在我们面对的这个函数拟合问题中所代表的就是,拟合的效果越好。这里我们采取的是均方误差函数(Mean Square Error,简称MSE): ?...其中红色散点是训练数据,绿色直线是原始函数,蓝色直线是训练后的函数,可以看到两个函数是越来越接近的。...总结概要 很多机器学习的算法的基础就是函数的拟合,这里我们考虑的是其中一种最简单也最常见的场景:线性函数的拟合,并且我们要通过mindspore来实现这个数据的训练。...通过构造均方误差函数,配合前向传播网络与反向传播网络的使用,最终大体成功的拟合了给定的一个线性函数。
一个办法是通过假设一个函数f(x,w)f(x, w),其中ww是该函数的参数,然后让它去拟合图中每个蓝色点。...于是我们定义误差函数,直观上可以理解为,当前参数w∗w^*对数据的拟合程度,拟合程度越高(误差越小),那么它就有可能越接近真实的函数y=sin(2πx)y = \sin(2 \pi x)....从图中可以看出:M较小时,如M = 0,1时,函数的拟合程度很弱,当M = 9时,也出现了拟合程度较弱(why?)。这是很有趣的现象,机器学习界叫这现象为过拟合。...我给个定义吧:由于函数的表达能力太强(模型复杂),它的表达能力远超真实数据所表现的这种“结构”,甚至把噪声的特性都学进来,从而离真实函数相差甚远。 产生的原因?...如果所给的数据集越庞大(噪声比例降低!),同样的M = 9时,则不会出现过拟合现象。如下图所示: ? 所以本节提出了三种解决方案: 1. 增大数据集的量 2.
正则化(regularization) 欠拟合 增加特征项: 构造复杂的多项式: 减少正则化参数: 过拟合 增大训练的数据量: 采用正则化方法: Dropout方法: 正则化的作用 (1)防止过拟合...正则化(增加模型参数,不要拟合的太真) 是一种常用的防止机器学习模型过拟合的技术。过拟合是指模型在训练数据上表现得太好,以至于它不能很好地推广到未见过的数据上。...通过选择合适的正则化参数 λ,我们可以控制模型对拟合数据和保持参数小之间的取舍,从而防止过拟合。...需要注意的是,虽然正则化可以帮助防止过拟合,但如果正则化参数 λ 设置得过大,可能会导致模型过于简单,无法捕捉到数据的复杂性,这就是欠拟合。...这可能会导致模型过于复杂,对训练数据中的噪声或异常值过度敏感,导致过拟合。 相反,如果参数θi的绝对值较小,那么对应的特征xi对模型的输出的影响就较小。
1、读入数据import randomimport numpy as npimport matplotlib.pyplot as pltimport torchimport torch.nn as nnimport....2f" % x]) y_train_list.append(["%.2f" % y]) x_train = np.array(x_train_list, dtype=np.float32) #将数据列表转为
一、查看原数据,打印查看 ?...源数据分布 import numpy as np import matplotlib.pyplot as plt files = np.load("/TensorFlow作业/homework.npz"...files['X'] label = files['d'] len = X.shape[0] plt.scatter(X[:,0],X[:,1],c=label) plt.show() 二、三层网络进行拟合...GradientDescentOptimizer_0.1.png 损失函数,二范数 vs 交叉熵 ? 交叉熵 learn_rate 0.1 ?...交叉熵 learning_rate 0.01 查看结果 二范数作为loss函数,学习率为0.1 时就可以达到较好的预测效果。
如何用matlab数据拟合函数?...假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0。...”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data...”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data...set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: Custom Equations 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人
当我们拿这个模型预测实际值时,如下图所示“+”号;这时,蓝色误差几乎不变,而红色误差突然升高,而红线不能表达除训练数据以外的数据,这就叫做过拟合。 ?...同样,分类中的过拟合如下图所示,有黄色两个“+”号没有很好的被分隔,这就是过拟合在作怪。 ? 那么,怎么解决过拟合呢?...方法一:增加数据量 大多数过拟合的原因是数据量太小,如果有成千上万数据,红线也会被拉直,没有这么扭曲,所以增加数据量能在一定程度上解决过拟合问题。...过拟合中W往往变化太大,为了让变化不会太大,我们在计算误差时需要做些手脚。...越复杂的神经网络,越多的数据,我们需要花费在神经网络上的时间就越多,其原因是计算量太大了,可是往往为了解决复杂的问题、复杂的结构和大数据,又是不可避免的。
背景 拟合非线性函数。 概念 当目标函数是非线性时,比如拟合二次函数,神经网络需要引如激活函数。激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题。...实践 拟合目标函数 y=x^2 + x + 1 import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional...as F from paddle.io import DataLoader, Dataset import matplotlib.pyplot as plt # 模拟数据 x = np.array(...[np.random.randn() for x in range(100)]) y = np.array([i * i + i + 1 for i in x]) # 定义数据集 class CurDataSet...paddle.to_tensor(i)).numpy()[0] for i in x]) plt.plot(x, z, color='red', label="eval") plt.legend() plt.show() 拟合曲线
2.给定bin数的直方图 3.具有指定分布拟合的直方图 4.具有核平滑函数拟合的直方图 ---- 一、功能 绘制正态拟合直方图 二、语法 1.histfit(data) 绘制 data 中的值的直方图并拟合正态密度函数...2.histfit(data,nbins) 使用 nbins 个 bin 绘制直方图,并拟合正态密度函数。...rng default; % For reproducibility r = normrnd(10,1,100,1); histfit(r) 结果如下图所示: histfit 使用 fitdist 对数据进行分布拟合...,10,'beta') 4.具有核平滑函数拟合的直方图 使用参数 (3,10) 从 beta 分布生成大小为 100 的样本。...使用 10 个 bin 构造具有平滑函数拟合的直方图。
有2种思路理解神经网络:一种是函数方式,另一种是概率方式。函数方式,通过神经网络进行复杂函数的拟合,生成对象的模型。...本文希望通过示例使大家理解神经网络函数拟合能力和神经网络中激活函数的作用, 通过将对象的特征转化为数字,多个特征组成向量,标签也转化为数字,那么训练模型就是在样本数据上,拟合向量到标签的函数。...非线性函数 单层神经网络,用下面的公式描述: ? 在没有非线性函数时, ? ? 将y1代入到y2中, ? ? 那么还是线性变换。...sigmoid 曲线拟合 图中,蓝色曲线是目标函数( ?...神经网络拟合多维空间的曲面是解释深度学习的一种方式。
对应于图中的函数,我们给定的是: f(x)=2x+3f(x)=2x+3 生成散点数据集 加噪声的方法在get_data函数中体现,其中生成数据集的方法为:先在[−10,10][−10,10]的范围内生成一系列的随机...损失函数值越小,代表结果就越好,在我们面对的这个函数拟合问题中所代表的就是,拟合的效果越好。...到这里为止,我们就成功的使用mindspore完成了一个函数拟合的任务。...总结概要 很多机器学习的算法的基础就是函数的拟合,这里我们考虑的是其中一种最简单也最常见的场景:线性函数的拟合,并且我们要通过mindspore来实现这个数据的训练。...通过构造均方误差函数,配合前向传播网络与反向传播网络的使用,最终大体成功的拟合了给定的一个线性函数。
要尝试入门数据分析,不如从数据拟合入手,毕竟操作起来非常非常非常简单! ?...什么是数据拟合 按照百度给出的定义,数据拟合是这样的: 数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。...这个解释看起来好像不太直白,我是这么理解的:数据拟合就是想办法给一堆散点画一条函数曲线。...在这里首先要强调的一点是劳动力人口的预测不可以简单地用拟合的方式来做(不然还要专家做什么),之所以用这个数据是为了方便大家去下载数据。...我们使用Excel的趋势线进行拟合得到的结果是: y=435.39x+72762,R方是0.9927,拟合效果相当完美!
1 函数命令拟合 最常用的函数拟合命令为fit,语法为| [拟合结果 拟合精度]=fit(X数据,Y数据,‘拟合类型’) 其中,具体的拟合类型可以参看帮助文档,也可以使用fittype来自定义新的函数类型...,比如定义拟合函数a*x+b*x^2+exp(4*x);| newtype=fittype('a*x+b*x^2+exp(4*x)') ; fit(x,y,newtype); x=[1;2;3;4;5...]; y=[2;3;4;5;6]; 2 使用界面启动拟合工具箱 具体操作步骤 在APP一栏,选择curve fitting工具箱,然后选择相应阶段的数据,填入X data和Y data 在fit options...,常用的一般有误差分析和鼠标标记坐标点 Fit Options可以选择拟合类型和函数次数 左侧Results显示了拟合结果的性能参数 底部的table of fits可以对多个不同的拟合结果进行性能比较...4 拟合类型 拟合类型 解释 Custom Equations 用户自定义的函数类型 Exponential exp指数逼近,有2种类型, a*exp(b*x)、 a*exp(b*x) + c*exp
这里我们在线性拟合的基础上,再介绍一下MindSpore中使用线性神经网络来拟合多变量非线性函数的解决方案。...非线性函数拟合 在前面这篇博客中我们所拟合的是一个简单的线性函数: \[y=ax+b \] 那么在这里我们先考虑一个最简单的非线性函数的场景: \[y=ax^2+b \] 同样的还是两个参数,需要注意的是...,如果要用线性神经网络来拟合非线性的函数,那么在给出参数的时候就要给出非线性的入参,以下是完整的代码(如果需要展示结果更好看的话可以参考上面提到的线性函数拟合的博客,这里我们为了提速,删除了很多非比要的模块...多变量函数拟合 不论是前面提到的线性函数拟合的场景,或者是上一个章节中单变量非线性函数的拟合,其实都只有1个输入参数,本章节介绍的场景有2个入参,这里我们要拟合的函数模型是: \[z(x,y)=ax^2...其他的函数类型 使用上一章节中所介绍的方法,不仅可以拟合多参数、多幂次的函数,同样的可以拟合一些其他的初等函数,比如: \[z(x,y)=ax^2+b\ sin(y)+c \] 完整的代码如下所示: #
[PaddleFluid小试牛刀]练习二·DNN正弦函数拟合 在上篇博文基础上做了些改进,拟合正弦曲线 生成数据 code from paddle import fluid as fl import numpy
我们使用一个三层的小网络来,模拟函数y = x^3+b函数 1 import tensorflow as tf 2 import numpy as np 3 import matplotlib.pyplot...as plt 4 5 #训练数据 6 x_data = np.linspace(-6.0,6.0,30)[:,np.newaxis] 7 y_data = np.power(x_data,3...) + 0.7 8 #验证数据 9 t_data = np.linspace(-20.0,20.0,40)[:,np.newaxis] 10 ty_data = np.power(t_data,3)
1.原始数据为真实值与预测值。 2.另外两列是制作中间的标准线。优化直线。 3. 4.对预测值与真实值的图进行优化。
领取专属 10元无门槛券
手把手带您无忧上云