相关视频
plot(elect,type="l")
我们可以尝试一个非常简单的模型,其中日期Y_t的消耗量是时间,温度(以多项式形式表示)以及工业生产指数IPI_t的函数。...plot(elect[passe,"Load"],type="l")
令人担忧的是该序列的异方差,其最小斜率低于最大斜率。...plot(z,type="l")
B = data.frame(z=z,t=1:length
然后,我们必须消除线性趋势,以平稳序列
z = residuals(lm(z~t,data=B))
arima...我们可以尝试引入季节性单位根
arima(Z,order = c(0,0,0),
seasonal = list(order = c(0,1,
最后,最后一个要简单一些
arima(Z,order...)的预测估计量是独立的,因此我们可以对方差项求和。