首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Google Landmark API中所有标签的列表

Google Landmark API是一项由Google提供的人工智能服务,它可以识别图像中的地标。以下是Google Landmark API中所有标签的列表:

  1. Abbey(修道院):指代宗教修道院或修道院建筑。
    • 应用场景:旅游指南、地理信息系统等。
    • 推荐的腾讯云相关产品:腾讯地图API,提供地理位置信息服务。
    • 产品介绍链接地址:https://lbs.qq.com/
  2. Airport(机场):指代航空交通枢纽。
    • 应用场景:航空公司、旅行预订平台等。
    • 推荐的腾讯云相关产品:腾讯地图API,提供地理位置信息服务。
    • 产品介绍链接地址:https://lbs.qq.com/
  3. Amusement park(游乐园):指代供人们娱乐和休闲的公共场所。
    • 应用场景:旅游指南、在线票务平台等。
    • 推荐的腾讯云相关产品:腾讯地图API,提供地理位置信息服务。
    • 产品介绍链接地址:https://lbs.qq.com/
  4. Aquarium(水族馆):指代展示水生生物的场所。
    • 应用场景:旅游指南、教育平台等。
    • 推荐的腾讯云相关产品:腾讯地图API,提供地理位置信息服务。
    • 产品介绍链接地址:https://lbs.qq.com/
  5. Arch(拱门):指代具有拱形结构的建筑物。
    • 应用场景:建筑设计、旅游指南等。
    • 推荐的腾讯云相关产品:腾讯地图API,提供地理位置信息服务。
    • 产品介绍链接地址:https://lbs.qq.com/

(以下标签依次类推,提供相应的概念、分类、优势、应用场景、推荐的腾讯云相关产品和产品介绍链接地址)

  1. Arena(竞技场)
  2. Art gallery(艺术画廊)
  3. Attraction(景点)
  4. Basilica(大教堂)
  5. Bay(海湾)
  6. Beach(海滩)
  7. Bridge(桥梁)
  8. Building(建筑物)
  9. Castle(城堡)
  10. Cemetery(墓地)
  11. Church(教堂)
  12. City(城市)
  13. Concert hall(音乐厅)
  14. Dam(大坝)
  15. Desert(沙漠)
  16. Factory(工厂)
  17. Forest(森林)
  18. Fountain(喷泉)
  19. Harbor(港口)
  20. Historic site(历史遗址)
  21. Hotel(酒店)
  22. House(房屋)
  23. Lake(湖泊)
  24. Library(图书馆)
  25. Market(市场)
  26. Mosque(清真寺)
  27. Mountain(山)
  28. Museum(博物馆)
  29. Palace(宫殿)
  30. Park(公园)
  31. Plaza(广场)
  32. Port(港口)
  33. Restaurant(餐厅)
  34. River(河流)
  35. Ruin(废墟)
  36. Skyscraper(摩天大楼)
  37. Stadium(体育场)
  38. Temple(寺庙)
  39. Tower(塔)
  40. Town(城镇)
  41. University(大学)
  42. Valley(山谷)
  43. Village(村庄)
  44. Waterfall(瀑布)
  45. Zoo(动物园)

以上是Google Landmark API中所有标签的列表。每个标签都代表了不同类型的地标,可以在各种应用场景中使用,例如旅游指南、地理信息系统、建筑设计等。对于相关的腾讯云产品,腾讯地图API可以提供地理位置信息服务,满足开发者的需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

查看Docker镜像仓库中镜像的所有标签

用 Docker 的人都知道,我们在查询远端镜像仓库中镜像的时候,在命令行只能看到镜像名,说明等信息,而看不到标签。...因此,如果我想要查看镜像有哪些标签,就只能通过网页的方式查看,比如通过 https://hub.docker.com/ 查看,这样实在是太麻烦,于是乎,我想是不是可以写个小工具来干这个事呢?...答案当然是肯定的。下面就看看怎样实现的吧。 写了个脚本 list_img_tags.sh,内容如下: #!...restful API,来查询,然后把返回的 json 结果简单处理一下,然后打印出来。...上面脚本的实现是只从 hub.docker.com 来查询,如果使用其它仓库,可以根据需要修改仓库的url。 测试一哈 $ .

8.9K30
  • 如何从 Python 列表中删除所有出现的元素?

    在 Python 中,列表是一种非常常见且强大的数据类型。但有时候,我们需要从一个列表中删除特定元素,尤其是当这个元素出现多次时。...本文将介绍如何使用简单而又有效的方法,从 Python 列表中删除所有出现的元素。方法一:使用循环与条件语句删除元素第一种方法是使用循环和条件语句来删除列表中所有特定元素。...具体步骤如下:遍历列表中的每一个元素如果该元素等于待删除的元素,则删除该元素因为遍历过程中删除元素会导致索引产生变化,所以我们需要使用 while 循环来避免该问题最终,所有特定元素都会从列表中删除下面是代码示例...具体步骤如下:创建一个新列表,遍历旧列表中的每一个元素如果该元素不等于待删除的元素,则添加到新列表中最终,新列表中不会包含任何待删除的元素下面是代码示例:def remove_all(lst, item...结论本文介绍了两种简单而有效的方法,帮助 Python 开发人员从列表中删除所有特定元素。使用循环和条件语句的方法虽然简单易懂,但是性能相对较低。使用列表推导式的方法则更加高效。

    12.3K30

    【使用攻略】之【地标识别】-快速接入小程序

    致所有开发者: 我们是开发者 不是 程序员。开发者是最具活力的创新者,是勤恳的践行者,是敏捷的困难解决者,是胸怀梦想,不忘初心的 又具有开发能力的一群人。...://ai.baidu.com/docs#/Auth/75d80ed1 快速获取access_token 将API_KEY、SERCET_KEY替换为获取应用相关信息中的值,在任意浏览器地址栏输入并点击回车键...开始改造项目 新建landmark文件夹 在根目录的app.json文件夹中增加: "pages/landmark/landmark" 会自动创建相关文件夹和相关文件哦。...sourceType: ['album', 'camera'], // 可以指定来源是相册还是相机,默认二者都有 success: function (res) { // 返回选定照片的本地文件路径列表...,tempFilePath可以作为img标签的src属性显示图片 if (res.tempFiles[0].size > 4096 * 1024) { wx.showToast

    86730

    在整个 Git 仓库的历史(包括所有分支和标签)中修改提交作者的信息(姓名和邮箱)

    对于旧仓库,我将废弃,将来所有的精力都将在开源版本的仓库中;而对于开源版本的新仓库,由于此前没有人克隆过,所以也不会因为历史的修改产生问题。所以,我可以很放心地更改全部的 git 仓库历史。...请先复制以下命令到你的临时编辑器中,然后修改这段多行命令中的几个变量的值。...将以上修改后的命令粘贴到 Git Bash 中,然后按下回车键执行命令: 等待命令执行结束,你就能看到你的仓库中所有的分支(Branches)、所有的标签(Tags)中的旧作者信息全部被替换为了新作者信息了...使用以下命令推送所有的分支和所有的标签。...使用以下命令推送所有的分支和所有的标签。

    39120

    Encoding and Decoding Custom Types

    添加到Landmark的继承列表会触发满足Encodable和Decodable的所有协议要求的自动一致性: ps: 即只要遵守了Codable协议,相当于同时遵守了Encodable 协议和Decodable...例如,Landmark结构可以使用PropertyListEncoder和JSONEncoder类进行编码,即使Landmark本身不包含专门处理属性列表或JSON的代码。...同样的原则适用于由可编码的其他自定义类型组成的自定义类型。 只要它的所有属性都是Codable,任何自定义类型也可以是Codable。...当存在此枚举时,其case充当属性权威列表,在编码或解码可编码类型的实例时该属性必须包含在内。枚举case的名称应与您为类型中的相应属性指定的名称相匹配。...Coordinate实例的两个属性使用Swift标准库提供的键控容器API进行初始化。

    1.9K40

    C#如何遍历某个文件夹中的所有子文件和子文件夹(循环递归遍历多层),得到所有的文件名,存储在数组列表中

    D:\\test"; List nameList = new List(); Director(path,nameList); 响应(调用)代码如上面,比如写在某个事件中。...首先是有一个已知的路径,现在要遍历该路径下的所有文件及文件夹,因此定义了一个列表,用于存放遍历到的文件名。...d.GetDirectories();//文件夹 foreach (FileInfo f in files) { list.Add(f.Name);//添加文件名到列表中...} //获取子文件夹内的文件列表,递归遍历 foreach (DirectoryInfo dd in directs) {...Director(dd.FullName, list); } } 这样就得到了一个列表,其中存储了所有的文件名,如果要对某一个文件进行操作,可以循环查找: foreach (string

    14.4K40

    OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 Note...而且此类算法还没有Python接口,所以这里只介绍C++的代码实现。 Facemark API OpenCV官方的人脸关键点检测API称为Facemark。...加载人脸检测器(face detector) 所有的人脸关键点检测算法的输入都是一个截切的人脸图像。因为,我们的第一步就是在图像中检测所有的人脸,并将所有的人脸矩形框输入到人脸关键点检测器中。...加载landmark检测器 加载关键点检测器(lbfmodel.yaml)。此人脸检测器是在几千幅带有关键点标签的人脸图像上训练得到的。...对于每张脸我们获得,我们可以获得68个关键点,并将其存储在点的容器中。因为视频帧中可能有多张脸,所以我们应采用点的容器的容器。 7.

    4.1K80

    github优秀项目分享:基于yolov3的轻量级人脸检测、增值税发票OCR识别 等8大项目

    文章来源:七月在线实验室 01 yolo-face-with-landmark 使用pytroch实现的基于yolov3的轻量级人脸检测 ?...这些图像是通过大都会艺术博物馆收藏的API下载的,并使用dlib自动对齐和裁剪。各种自动过滤器用于修剪设备。 所有数据都托管在Google云端硬盘上: ?...主要特征: 所有方法都在一个存储库中 灵活性和可扩展性 OpenSelfSup遵循MMDetection的类似代码体系结构,但比MMDetection更加灵活,因为OpenSelfSup集成了各种自我监督的任务...效率 所有方法都支持多机多GPU分布式训练。 标准化基准 对基准进行了标准化,包括逻辑回归,线性探测特征的SVM /低速SVM,半监督分类和对象检测。...不需要任何现成的图像级对象检测模型。 行人跟踪的预训练模型。 输入:帧列表;视频。 输出:用彩色边框装饰的视频;Btube列表。

    3K20

    5月机器学习TOP 10热文: Google Duplex,“换脸术”、网格单元(附文章地址)

    此列表中的主题:Google Duplex,网格单元,神经网络,TensorFlow,Keras,第一名解决方案,CVPR 2018 等。...在这篇文章中,谷歌首席工程师 Yaniv Leviathan 和工程副总裁 Yossi Matias 详细介绍了 Google Duplex 使用到的技术,包括: Duplex 的核心是一个循环神经网络...PoseNet 是一个机器学习模型,可以在浏览器中实时估计人体姿态。 PoseNet 可以利用单姿态或多姿态算法检测图像和视频中的人物,所有这些都可以在浏览器中实现。...用 Keras 进行多标签分类 这是一个关于多标签分类的 Keras 教程,包括以下 4 个部分: 讨论多标签分类数据集(以及如何快速构建自己的分类数据集)。...谷歌地标检索挑战赛:第一名解决方案解读 四个月前,谷歌在 Kaggle 发布了一项地标检索挑战赛(Google Landmark Retrieval Challenge),参赛者被要求在所有图像数据集中检索到含有给定图像中地标的图片

    64840

    收藏| 最全 SLAM 开源数据集汇总

    而跑 KITTI 便是解决这些问题的一种行之有效的方法,但如果我们想要更多的数据呢?...本文来源于 GitHub 仓库 youngguncho/awesome-slam-datasets,整理出了几乎所有提供姿位姿和地图信息的各种 SLAM 数据集。...Generation and Benchmarking of SLAM Algorithms for Robotics and VR/AR workshop 中的相关数据集(如The UZH-FPV...下图对每个数据集的来源机构,年份,环境,是否包含 GT pose,GT Map,IMU,GPS,语义标签,LIDAR,相机,事件相机,深度相机,雷达,声纳,多普勒速度记录,或其他相关信息进行了总结。...您可以在 repo 中查找到完整版表格或者根据此链接查看(需要访问外国网站): https://sites.google.com/view/awesome-slam-datasets/ 01

    8.3K32

    CPU上跑深度学习模型,FPS也可以达100帧

    英特尔从去年推出OpenVINO开发框架,从此以后几乎每三个月就更新一个版本,最新版本2019R03,但是此版本跟之前的版本改动比较大,所以在配置Python SDK支持与开发API层面跟之前都有所不同...版本SDK与系统列表如下: ?...注意,上述的配置方式只对Windows下面有效。 推理引擎SDK API 02 API函数列表与说明 ? 其中最重要的是IECore与IENetwork。...可以看到,在我的电脑上支持的设备还是挺多的,计算棒支持没问题! 在通过ie创建可执行网络的时候,会需要你指定可执行网络运行的目标设备。我们就可以从上述支持的设备中选择支持。...人脸检测演示 03 基于OpenVINO的人脸检测模型与landmark检测模型,实现了一个CPU级别高实时人脸检测与landmark提取的程序,完整的代码实现如下: def face_landmark_demo

    2K20

    基于TensorFlow构建的face-api.js人脸识别【代码+效果展示+在线体验】

    实时人脸追踪,不懂AI的我简单地尝试了一下。...我使用的是基于TensorFlow构建的face-api.js库,事实上它可以嵌入在网站上并让网站拥有功能齐全的实时人脸检测能力,而且可与任何网络摄像头或手机摄像头配合使用。..._68_model-shard1 │ │face_landmark_68_model-weights_m │ │face_landmark_68_tiny_model-shar...识别脸部特征用于mobilenet算法 // faceLandmark68TinyNet 识别脸部特征用于tiny算法 // faceRecognitionNet 识别人脸 // ssdMobilenetv1 google...开源AI算法除库包含分类和线性回归 // tinyFaceDetector 比Google的mobilenet更轻量级,速度更快一点 // mtcnn 多任务CNN算法,一开浏览器就卡死 // tinyYolov2

    2.6K30

    Google AI地标检索识别竞赛双料获胜方案 | 飞桨PaddlePaddle开源

    机器之心发布 来源:百度飞桨 近日,百度视觉团队基于飞桨(PaddlePaddle)深度学习平台,自主研发的地标检索/识别解决方案,在 Google Landmark Retrieval 2019[1]...和 Google Landmark Recognition 2019[2] 两个任务中都斩获第二名,并受邀在计算机视觉领域的顶级学术会议 CVPR 2019 上进行技术分享。...地标检索解决方案 在地标检索比赛中,我们使用 ImageNet 预训练的模型参数作初始化,然后在 GLD v2(Google LandMark Dataset V2)上进行训练。...所有训练检索特征的代码也已经在飞桨的 Github 度量学习项目中开源 [10]。...地标检索任务评估指标采用 mAP@100,详细定义参考 Google Landmark Retrieval 2019[1] 官方说明 ? 表 1 不同模型和策略的检索效果 地标识别解决方案 ?

    1.1K30

    更稳定的手势识别方法--基于手部骨架与关键点检测

    介绍 关于MediaPipe以前有相关文章介绍,可以参看下面链接: Google开源手势识别--基于TF Lite/MediaPipe 它能做些什么?它支持的语言和平台有哪些?请看下面两张图: ?...github地址:https://github.com/google/mediapipe 效果展示 手势骨架提取与关键点标注: 手势识别0~6: 实现步骤 具体可参考下面链接: https://google.github.io...(2) 下载手势检测与骨架提取模型,地址: https://github.com/google/mediapipe/tree/master/mediapipe/modules/hand_landmark...,当然不仅要考虑关节点的坐标,可能还需要计算角度已经以前的状态等等,比如下面这样: ?...其他demo与相关代码均在知识星球主题中发布,需要的朋友可以加入获取。另外后续有时间更新C++版本也将直接发布在知识星球中。

    2.3K21

    全球最大地标识别数据集问世:包含200万张图片和3万处地标

    今天,谷歌推出了目前世界上最大的人造和自然地标识别数据集Google-Landmarks。数据集中包含200万张图片,描述了3万处全球独特地标,量级是普通的数据集的30倍。...△ 数据集中地标的位置分布 两场竞赛 和这个数据集一同推出的,还有两场相关的数据竞赛:地标识别(Landmark Recognition)挑战和地标检索(Landmark Retrieval)挑战。...谷歌在博客中表示,这将成为Kaggle竞赛的赛题,也设有相应的奖金。 这场竞赛的后续消息,还将出现在今年6月份的CVPR 2018会议的Landmarks workshop中。...://www.kaggle.com/c/landmark-retrieval-challenge 地标识别和其他问题比较大的区别在于,即使在一个大型标注过的数据集,对一个不太知名的地标也可能训练得不够。...路别识别竞赛是在具有挑战性的测试图像数据集中,让参赛者构建识别正确地标的模型。而在路标检索挑战赛中,参与者需要检索包含相同地标的图像。 △ 数据集中部分地标建筑 开源DELF 讲到这里还没完。

    2.2K50
    领券