首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

快速选择合适的机器学习算法

机器学习算法速查表帮助你从各种机器学习算法中选择,以找到适合你的具体问题的算法。 本文将引导你完成如何使用速查表的过程。...选择算法时的注意事项 选择算法时,请务必考虑这些方面:准确度,训练时间和易用性。 许多用户将准确度放在第一位,而初学者则倾向于关注他们最了解的算法。...当被提供一个数据集时,首先要考虑的是如何获得结果,无论这些结果如何。初学者倾向于选择易于实现的算法,并可以快速获得结果。 这样做很好,因为这只是过程的第一步。...决策树、随机森林和梯度提升都是基于决策树的算法。决策树有许多变种,但它们都做同样的事情--将特征空间细分为具有相同标签的区域。决策树易于理解和实施。 然而,当我们剪枝并深度运行树时往往过度拟合数据。...随机森林和梯度提升是使用树算法实现良好准确性以及克服过拟合问题的两种流行方式。 神经网络和深度学习 ? 20世纪80年代中期,由于并行和分布式处理能力,神经网络蓬勃发展。

69621

算法浅谈——快速筛出topK的快速选择算法

在之前Python系列当中,我们介绍了heapq这个库的用法,它可以在的时间里筛选出前K大或者前K小的元素。今天我们一起来看一个可以更快实现选择的快速选择算法。...这是因为我们每次迭代的过程中,数组都会被舍弃一部分,我们把完整的搜索树画出来大概是下面这个样子。 ? 可以看到,虽然总的迭代次数还是次,但是每一层当中遍历的元素个数不再是n。...我们当前的快速选择算法和快排算法几乎如出一辙,整个的思路是一样的,也就是说,在数组是逆序的情况下同样会遇到复杂度升级的问题。不过好在这个问题并不是不可解的,我们下面就来分析一下关于这种情况的优化。...该算法可以找到一个比较合适的标杆,用来在快排和快速选择的时候切分数组。...,改动量并不大,只需要加上两行即可。

94910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    随机森林随机选择特征的方法_随机森林步骤

    (随机森林(RandomForest,RF)网格搜索法调参) 摘要:当你读到这篇博客,如果你是大佬你可以选择跳过去,免得耽误时间,如果你和我一样刚刚入门算法调参不久,那么你肯定知道手动调参是多么的低效。...对于scikit-learn这个库我们应该都知道,可以从中导出随机森林分类器(RandomForestClassifier),当然也能导出其他分类器模块,在此不多赘述。...在我们大致搭建好训练模型之后,我们需要确定RF分类器中的重要参数,从而可以得到具有最佳参数的最终模型。这次调参的内容主要分为三块:1.参数含义;2.网格搜索法内容;3.实战案例。...一般来说n_estimators太小,容易欠拟合,n_estimators太大,计算量会太大,并且n_estimators到一定的数量后,再增大n_estimators获得的模型提升会很小,所以一般选择一个适中的数值...(3) criterion: 即CART树做划分时对特征的评价标准。分类RF对应的CART分类树默认是基尼系数gini,另一个可选择的标准是信息增益。

    2.1K20

    随机之美——机器学习中的随机森林模型

    在结点进行分裂的时候,除了先随机取固定个特征,然后选择最好的分裂属性这种方式,还有一种方式,就是在最好的几个(依然可以指定sqrt与log2)分裂属性中随机选择一个来进行分裂。...总结起来,使用随机性的三个地方: 1.随机有放回的抽取数据,数量可以和原数据相同,也可以略小; 2.随机选取N个特征,选择最好的属性进行分裂; 3.在N个最好的分裂特征中,随机选择一个进行分裂; 因此,...而scikit-learn中,依然当成连续的变量处理,所以在条件判断的时候,才会有house 当有多个最优分割的时候,spark与scikit-learn在选择上也有区别,spark会按属性顺序进行选择...,而scikit-learn会随机选择一个。...因为随机森林能计算参数的重要性,因此也可用于对数据的降维,只选取少量几维重要的特征来近似表示原数据。同理,在数据有众多的特征时,也可以用于特征选择,选择关键的特征用于算法中。

    2K90

    支持带权重的对象随机选择方法

    一、背景 在工作中会遇到有多个下游业务接口或者服务器(这里统称为[目标])需要选择性调用,而且还支持配置权重。...比如有3台服务器,分别给予 20%,30%和 50% 的流量;比如有3个厂商的接相似服务,分别给予 80%,5%,15% 的调用量配比。 那么我们该如何实现?...,然后随机获取 0-1 之间的 double 值,落在哪个区间就获取该区间对应的对象。...* @param map 元素和对应权重 * @param 元素类型 * @return 符合权重的随机元素 */ public static <K..."次;工具2出现" + second + "次"); } } 运行结果,符合预期 工具1出现0次;工具2出现10000次 工具1出现10000次;工具2出现0次 四、总结 本文给出三种常见的带权重随机选择的方式

    2.2K30

    Python中的加权随机

    我们平时比较多会遇到的一种情景是从一堆的数据中随机选择一个, 大多数我们使用random就够了, 但是假如我们要选取的这堆数据分别有自己的权重, 也就是他们被选择的概率是不一样的, 在这种情况下, 就需要使用加权随机来处理这些数据...去掉临时变量 其实在这个方法里面totals这个数组并不是必要的, 我们调整下策略, 就可以判断出weights中的位置 def weighted_choice(weights): rnd = random.random...更多的随机数 如果我们使用同一个权重数组weights, 但是要多次得到随机结果, 多次的调用weighted_choice方法, totals变量还是有必要的, 提前计算好它, 每次获取随机数的消耗会变得小很多..., WeightedRandomGenerator的速度是weighted_choice的100倍 所以我们在对同一组权重列表进行多次计算的时候选择方法4, 如果少于100次, 则使用方法3 5....使用accumulate 在python3.2之后, 提供了一个itertools.accumulate方法, 可以快速的给weights求累积和 >>>> from itertools import

    2.3K30

    如何随机选择vcf文件中的变异位点

    现在做群体基因组的论文大部分会公开自己论文分析中的变异检测结果,通常是vcf文件,我们自己可以把vcf文件下载下来试着复现论文中的内容,有时候vcf文件过大,每一步处理起来都会花费比较长的时间。...有时候就想把这个vcf文件缩小,随机选择一部分。 查了一下,没有找到现成的工具或者脚本。尝试自己写脚本,没有思路。...这个函数随机生成一个小于1的数,如果我们想要随机取vcf文件中的10%,就设置random.random()的行就是所有的行的10%左右。...当然不是完全精确的10%。如果想要每次都输出相同的内容,就设置随机数种子 random.seed(123)。...种子设置的一样,输出的行就是一样的 完整的python脚本 import sys import random # 1 input vcf # 2 output vcf # 3 proportion 0

    44810

    十亿行大数据挑战——用Java快速聚合文本文件中的10亿行的有趣探索

    1️⃣️ 一亿行挑战 状态 1月1日:此挑战已开放提交! 一亿行挑战(1BRC)是一项有趣的探索,旨在了解现代Java在从文本文件中聚合十亿行数据方面的极限。...运行挑战 该仓库包含两个程序: •dev.morling.onebrc.CreateMeasurements(通过create_measurements.sh调用):在该项目的根目录下创建一个包含可配置数量的随机测量值的...尽情优化: 调整CalculateAverage程序以加快速度,你可以随意适合的方式(只需遵守下面描述的几条规则)。...选项包括并行化计算、使用(孵化中的)Vector API、同时内存映射文件的不同部分、使用AppCDS、GraalVM、CRaC等加速应用程序启动、选择和调优垃圾收集器,以及更多。...•使该实现快速。非常快速。

    1.3K10

    Google Earth Engine ——带缓冲的随机样本选择

    此示例最终将依赖于具有唯一整数值​​的相邻单元格,因此一个好的起点是重新投影由 生成的随机图像ee.Image.random()。 阿尔伯斯投影中的 50 公里网格单元,随机着色。...下一步是在每个网格单元中随机选取一个点。这可以通过使用reduceConnectedComponents()单元格结果加上第二个随机图像来完成(仍然在图像空间中),选择每个网格单元格中的最大随机值。...50 公里的网格单元(随机着色),每个单元中有 1 个随机选择的点(白色)。平均而言,点间隔50km开,但还不能保证最小间距。...如果需要“严格”遵守缓冲距离,那么网格中每隔一行和一列的单元格可以使用ee.Image.pixelCoordinates()和一些数学运算来屏蔽掉。...你可以这样做: // 按投影单位中 0 到 1 之间的随机量平移投影。

    35110

    使用Numpy验证Google GRE的随机选择算法

    最近在读《SRE Google运维解密》第20章提到数据中心内部服务器的负载均衡方法,文章对比了几种负载均衡的算法,其中随机选择算法,非常适合用 Numpy 模拟并且用 Matplotlib 画图,下面是我的代码...: # 使用 numpy 模拟 GRE 中的随机选择算法,并使用 pyplot绘图 import numpy as np from numpy import random r = random.randint...np.arange(1,301) plt.bar(x,height) plt.axis([0,301,0,280]) plt.grid(True) plt.title("75%子集,225个后端") 整个模拟的思路就是首先随机生成一个二维数组...我按照三个参数模拟了一下,感觉随机选择算法不管子集的大小如何,负载的情况都不是很均衡。子集小的情况下,能够偏出平均值50%,子集大的时候(75%)仍能偏出平均值15%左右。 ? ? ?...参考资料: 1、SRE Google 运维解密 2、Python中plt.hist参数详解 3、Matplotlib 4、彻底解决matplotlib中文乱码问题 5、numpy中的随机数模块

    93020

    【分治】数组中的第K个最大元素(快速选择算法)

    数组中的第K个最大元素 215. 数组中的第K个最大元素 ​ 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 ​...​ 上面的解法很优秀的,但是时间复杂度还是达不到题目要求的 O(n),所以我们要换一种算法,也就是快速选择算法,它的时间复杂度可以达到 O(n) 级别,这是算法导论经过数学分析推导的,这里就不推导了,...快速选择算法,其实和前面的快速排序是类似的,也是通过分治的思想,只不过对分治后的处理稍作改动罢了! ​...按照之前的快速排序那样子的分治,根据一个随机基准值 key,假设 第一次分类完毕,最后分为了三个部分,如下所示 ​ 那么根据上图中已知的 left、i、right 三个指针,我们也是能确定三个区间各自的元素个数的...nums[(rand() % (RIGHT - LEFT + 1)) + LEFT]; } // 快速选择算法 int quick_select(vector& nums,

    10610

    编写程序,随机产生30个1-100之间的随机整数并存入5行6列的二维列表中,按5行6列的格式输出

    一、前言 前几天在某乎上看到了一个粉丝提问,编写程序,随机产生30个1-100之间的随机整数并存入5行6列的二维列表中,按5行6列的格式输出?这里拿出来跟大家一起分享下。...30个1到100之间的整数 numbers = [random.randint(1, 100) for i in range(30)] # 将生成的数字按5行6列的格式存储到二维列表中 rows =...print("\n") 解释: random.randint(1, 100) 是用来生成1到100之间的随机整数的函数。...for 循环用来将随机数填充到二维列表中。 最后一个 for 循环用来按5行6列的格式输出二维列表中的数字。 运行之后,可以得到预期的结果: 后来看到问答区还有其他的解答,一起来看。...下面是【江夏】的回答: import random # 生成 30 个 1-100 的随机整数,并存入 5 行 6 列的二维列表中 data = [[random.randint(1, 100) for

    68820

    如何在 PowerBI 中快速调试上百行 DAX 公式

    这就导致很多伙伴希望知道中间过程中的表到底与预期是否一致。...典型的错误 来看一个典型的错误信息: Power BI 的错误信息并不友好,真不知道产品经理是怎么想的,一旦出现错误就给出一个恐怖的差子,而且还就是这么设计的,导致很多伙伴遇到这样的恐怖信息就望而却步了...这个信息几乎可以帮助我们锁定出现问题的位置是百分位数的计算位置。 进行调试 回到 DAX 公式中,大概如下: 不难发现错误是在这里引起的。...【技巧二】看函数中涉及的中间表数据。 【技巧三】分析函数的执行过程。(可能涉及到上下文转换) 如果可以同时考虑到上述三点,几乎 80% 的错误就可以被分析出来。我们来试一试。...0.75 ) 这个公式中用到了一个表中的元素 [已售在库天数],后面的参数 0.75 必须介于合理的范围之间,如果: N = 1 或 N = 2,都会导致这个公式错误,那么 SoldDaysList

    1.2K20

    从 Notion 分片 Postgres 中吸取的教训(Notion 工程团队)

    到 2020 年年中,很明显,产品的使用将超过我们值得信赖的 Postgres 单体的能力,后者在五年和四个数量级的增长中尽职尽责地为我们服务。...决策 1:对所有与块有传递关系的数据进行分片 由于 Notion 的数据模型围绕块的概念展开,每个块在我们的数据库中占据一行,因此 block(块) 表是分片的最高优先级。...反过来,discussion 可能会引用 comment 表中的行,等等。...因为分片表中的每一行要么是一个块,要么与一个块相关,并且每个块都属于一个工作区,所以我们使用 workspace ID 作为分区键(partition key)。...workspace ID(我们的分区键)尚未填充到旧数据库中,回填此列会加剧我们单体应用的负载。相反,我们在写入分片时即时回填每一行,需要一个自定义的追赶脚本。 旨在实现零停机迁移。

    1.4K20
    领券