首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响|附代码数据

然后,可以使用滞后的概念来描述向前(从固定结果到未来结果)或向后(从固定结果到过去的结果)的关系。...2.非线性和滞后效应 在本节中,我介绍了时间序列模型的基本公式,然后介绍了描述非线性效应和滞后效应的方法,后者通过简单DLM的模型来描述。...例如: R> mkgbais(mxlag =5,type ="strta", kots = c(2, 4)) 在此示例中,在通过第一个参数maxlag将最大滞后固定为5之后,滞后向量0:maxlag对应于... malag = 30) 在此示例中,臭氧的交叉基包括一个预测空间的阈值函数,线性关系超过40.3 µgr / m3,并且虚拟参数化假设沿滞后0-1、2-5和6-10的层具有恒定的分布滞后效应。...它包括滞后效应矩阵和总体效应向量,以及相应的标准误差矩阵和向量。如第5节所示。

79820

分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响|附代码数据

该方法论基于交叉基的定义,交叉基是由两组基础函数的组合表示的二维函数空间,它们分别指定了预测变量和滞后变量的关系。 关键字:分布滞后模型,时间序列,平滑,滞后效应,R。...然后,可以使用滞后的概念来描述向前(从固定结果到未来结果)或向后(从固定结果到过去的结果)的关系。...例如: R> mkgbais(mxlag =5,type ="strta", kots = c(2, 4)) 在此示例中,在通过第一个参数maxlag将最大滞后固定为5之后,滞后向量0:maxlag对应于... malag = 30) 在此示例中,臭氧的交叉基包括一个预测空间的阈值函数,线性关系超过40.3 µgr / m3,并且虚拟参数化假设沿滞后0-1、2-5和6-10的层具有恒定的分布滞后效应。...它包括滞后效应矩阵和总体效应向量,以及相应的标准误差矩阵和向量。如第5节所示。

48800
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响

    然后,可以使用滞后的概念来描述向前(从固定结果到未来结果)或向后(从固定结果到过去的结果)的关系。...2.非线性和滞后效应 在本节中,我介绍了时间序列模型的基本公式,然后介绍了描述非线性效应和滞后效应的方法,后者通过简单DLM的模型来描述。...例如: R> mkgbais(mxlag =5,type ="strta", kots = c(2, 4)) 在此示例中,在通过第一个参数maxlag将最大滞后固定为5之后,滞后向量0:maxlag对应于...malag = 30) 在此示例中,臭氧的交叉基包括一个预测空间的阈值函数,线性关系超过40.3 µgr / m3,并且虚拟参数化假设沿滞后0-1、2-5和6-10的层具有恒定的分布滞后效应。...它包括滞后效应矩阵和总体效应向量,以及相应的标准误差矩阵和向量。如第5节所示。

    3.9K30

    分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响|附代码数据

    该方法论基于交叉基的定义,交叉基是由两组基础函数的组合表示的二维函数空间,它们分别指定了预测变量和滞后变量的关系。 关键字:分布滞后模型,时间序列,平滑,滞后效应,R。...然后,可以使用滞后的概念来描述向前(从固定结果到未来结果)或向后(从固定结果到过去的结果)的关系。...例如: R> mkgbais(mxlag =5,type ="strta", kots = c(2, 4)) 在此示例中,在通过第一个参数maxlag将最大滞后固定为5之后,滞后向量0:maxlag对应于... malag = 30) 在此示例中,臭氧的交叉基包括一个预测空间的阈值函数,线性关系超过40.3 µgr / m3,并且虚拟参数化假设沿滞后0-1、2-5和6-10的层具有恒定的分布滞后效应。...它包括滞后效应矩阵和总体效应向量,以及相应的标准误差矩阵和向量。如第5节所示。

    78920

    揭开因果图模型的神秘面纱:常用的因果图模型

    交叉滞后面板模型(CLPM):通过分析不同时间点的面板数据,识别变量之间的滞后效应和因果关系。例如,分析健康行为和心理健康之间的交叉滞后效应。...双重差分(DiD):使用双重差分方法,控制时间和个体固定效应,消除潜在混杂因素的影响。例如,分析政策实施前后不同地区的经济增长差异。...5.因果图模型的先进技术和方法5.1 结合机器学习和因果推理的方法因果森林(Causal Forest)定义:因果森林是一种扩展的随机森林方法,用于估计异质性处理效应。...5.3 动态因果模型和时间序列分析动态因果模型定义:动态因果模型用于表示和分析随时间变化的因果关系。它们通常用于处理时间序列数据,并考虑变量之间的时间滞后效应。...示例:使用动态因果模型分析货币政策对通货膨胀和失业率的长期影响,考虑政策实施后的滞后效应。

    1.4K10

    系列文章| R语言分布滞后线性和非线性模型DLM和DLNM建模应用|附代码数据

    在已经提出的处理之后效应的各种方法中,分布式滞后模型(DLM)发挥了主要作用,最近在空气污染和温度研究中被用来量化健康效应。...在此,我们开发了分布式滞后非线性模型(DLNM),这是一个可以同时代表非线性暴露-反应依赖性和滞后效应的建模框架。...这种方法是基于 "交叉基准 "的定义,这是一个双维的函数空间,它同时描述了沿预测空间和其发生的滞后维度的关系形状。...该方法论基于交叉基的定义,交叉基是由两组基础函数的组合表示的二维函数空间,它们分别指定了预测变量和滞后变量的关系。本文在R软件实现DLNM,然后帮助解释结果,并着重于图形表示。...----点击标题查阅内容分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响左右滑动查看更多01020304DLNM类代表描述描述非线性效应和滞后效应的现象的统一框架

    39100

    系列文章| R语言分布滞后线性和非线性模型DLM和DLNM建模应用|附代码数据

    在已经提出的处理之后效应的各种方法中,分布式滞后模型(DLM)发挥了主要作用,最近在空气污染和温度研究中被用来量化健康效应。...在此,我们开发了分布式滞后非线性模型(DLNM),这是一个可以同时代表非线性暴露-反应依赖性和滞后效应的建模框架。...这种方法是基于 "交叉基准 "的定义,这是一个双维的函数空间,它同时描述了沿预测空间和其发生的滞后维度的关系形状。...该方法论基于交叉基的定义,交叉基是由两组基础函数的组合表示的二维函数空间,它们分别指定了预测变量和滞后变量的关系。本文在R软件实现DLNM,然后帮助解释结果,并着重于图形表示。...----点击标题查阅内容分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响左右滑动查看更多01020304DLNM类代表描述描述非线性效应和滞后效应的现象的统一框架

    36700

    【视频讲解】偏最小二乘结构方程模型PLS-SEM分析白茶产业数字化对共同富裕的影响|附代码数据

    计算中介效应 在结构方程模型中,中介效应通常用于评估一个变量(中介变量)在解释两个其他变量(自变量和因变量)之间关系时的作用。...然后,中介效应的大小可以通过以下公式计算: 中介效应 = a * b 我们没有直接得到a和b的值,而是得到了氛围感知变量纳入模型前后,共同富裕水平变量的解释力度的变化。...import cross_val_predict # 导入交叉验证函数 # 定义PLS对象 pls = PLSReg...... nts=5) # 定义保留5个成分的PLS回归模型 # 拟合数据...5 带有潜在变量的 SEM 当我们对测试有潜变量的模型感兴趣时,怎么办?通常,这将是一个 "反映性潜变量 "模型,我们认为一个假定的潜变量是由几个(通常是3个以上)显性指标来衡量的。...LRT 的自由度是自由参数数量的差异(此处为 1)。 5.4 详细看模型 我们可以查看自由参数在矩阵规范中的位置。自由参数被编号(按顺序),零表示可能的参数,固定为零(即不估计)。

    12300

    5种常用的交叉验证技术,保证评估模型的稳定性

    你有没有想过是什么原因导致了这些排名的高差异?换句话说,为什么一个模型在私有排行榜上评估时会失去稳定性? 在本文中,我们将讨论可能的原因。我们还将学习交叉验证和执行它的各种方法。 模型的稳定性?...这有助于实现更一般化的关系,并维护模型的稳定性。 交叉验证是什么? 交叉验证是一种在机器学习中用于评估机器学习模型性能的统计验证技术。...交叉验证使用的标准步骤: 它将数据集分为训练和测试两部分。 它在训练数据集上训练模型。 它在测试集中评估相同的模型。 交叉验证技术可以有不同的风格。...n次交叉验证/ k次交叉验证 总有需要大量的数据来训练模型,将测试数据集的一部分可以离开不理解的模型数据的模式可能会导致错误,也可能导致增加欠拟合模型的测试数据。...为了克服这个问题,有一种交叉验证技术,它为模型的训练提供了充足的数据,也为验证留下了充足的数据。K折叠交叉验证正是这样做的。 n次交叉验证涉及的步骤: 基于N- fold分割你的整个数据集。

    1.5K20

    R语言分布滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模应用|附代码数据

    上述简单模型的一般表示方法为 滞后效应 额外维度 在存在滞后效应的情况下,在给定时间t的结果可以用过去的暴露xt-来解释,滞后代表暴露和反应之间所经过的时间。...交叉基的概念 虽然DLNM的代数符号可能相当复杂,涉及到三维数组,但基本概念是建立在交叉基数的定义上的,是很简单的。交叉基点可以被描绘成一个双维的函数空间,同时描述沿x的关系的形状及其分布的滞后效应。...02 03 04 结果 当用于比较不同的建模选择时,QAIC导致了一个相对复杂的模型,预测器空间有11df,滞后维度有5df,总共有55个参数用于定义关系。...相比之下,QBIC表明是一个5×5df的模型,用25df来描述总体效果。由于对DLNM框架内这些标准的表现没有任何了解,我们选择了后者作为我们的最终模型。...图2显示了特定滞后期(0、5、15和28)的温度和特定温度(-10.8、-2.4、26.5和31.3◦C)的滞后期的RR,大约对应于温度分布的第0.1、5、95和99.9百分位数(称为中度和极端寒冷和炎热

    73000

    R语言分布滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模应用|附代码数据

    这种方法是基于 "交叉基准 "的定义,这是一个双维的函数空间,它同时描述了沿预测空间和其发生的滞后维度的关系形状。 通过这种方式,该方法为以前用于该环境的一系列模型提供了一个统一的框架。...交叉基的概念 虽然DLNM的代数符号可能相当复杂,涉及到三维数组,但基本概念是建立在交叉基数的定义上的,是很简单的。交叉基点可以被描绘成一个双维的函数空间,同时描述沿x的关系的形状及其分布的滞后效应。...,QAIC导致了一个相对复杂的模型,预测器空间有11df,滞后维度有5df,总共有55个参数用于定义关系。...相比之下,QBIC表明是一个5×5df的模型,用25df来描述总体效果。由于对DLNM框架内这些标准的表现没有任何了解,我们选择了后者作为我们的最终模型。...图2显示了特定滞后期(0、5、15和28)的温度和特定温度(-10.8、-2.4、26.5和31.3◦C)的滞后期的RR,大约对应于温度分布的第0.1、5、95和99.9百分位数(称为中度和极端寒冷和炎热

    66720

    R语言分布滞后线性和非线性模型(DLMs和DLNMs)分析时间序列数据

    温度的滞后效应由两个滞后层(0和1-3)定义,假设每个层内的效应为常数。参数breaks=1定义了第二个区间的下边界。...: 4 scale: 15 intercept: TRUE 现在,在回归模型的模型公式中可以包含这两个交叉基对象。...对于温度,我定义了滞后0-1、2-5、6-10的3个区间。回归模型包括一年中某天和某天的自然样条,以便分别描述每年的季节性影响和长期趋势。...初步解释表明,低温比高温具有更长的死亡风险,但不是立即的,在滞后0时显示出“保护”效应。这种分析能力很难用更简单的模型实现,可能会丢失关联的重要细节。...首先,我指定一个新的交叉基矩阵,运行模型并以通常的方式进行预测 指定的温度交叉基由双阈值函数和自然三次样条组成,分别以10°C和25°C的截止点作为预测器的维数,以对数标度中相等间距的节点值作为滞后量,

    2.8K30

    R语言分布滞后线性和非线性模型(DLMs和DLNMs)分析时间序列数据

    温度的滞后效应由两个滞后层(0和1-3)定义,假设每个层内的效应为常数。参数breaks=1定义了第二个区间的下边界。...: 4 scale: 15 intercept: TRUE 现在,在回归模型的模型公式中可以包含这两个交叉基对象。...对于温度,我定义了滞后0-1、2-5、6-10的3个区间。回归模型包括一年中某天和某天的自然样条,以便分别描述每年的季节性影响和长期趋势。...初步解释表明,低温比高温具有更长的死亡风险,但不是立即的,在滞后0时显示出“保护”效应。这种分析能力很难用更简单的模型实现,可能会丢失关联的重要细节。...首先,我指定一个新的交叉基矩阵,运行模型并以通常的方式进行预测 指定的温度交叉基由双阈值函数和自然三次样条组成,分别以10°C和25°C的截止点作为预测器的维数,以对数标度中相等间距的节点值作为滞后量,

    12810

    R语言Apriori关联规则、K-means均值聚类数据挖掘中药专利复方治疗用药规律网络可视化

    药对中的中药在组方配伍时具有在处方中同时出现的特点,因此在关联规则分析中,分析置信度较大且双向关联的规则即可得到药对。...#聚类类别号kmod$cluster查看每个类别中的强关联规则聚类1聚类2配伍关系网络的聚类分析结果显示了抑郁症治疗中常用的中药“社团”,反映了复方中一些配伍关系相对密切、固定的中药联合,临床运用可以提高疗效...----最受欢迎的见解1.R语言分布式滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模2.R语言分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据3.R语言群组变量选择...、组惩罚GROUP LASSO套索模型预测分析新生儿出生体重风险因素数据和交叉验证、可视化4.R语言逻辑回归、随机森林、SVM支持向量机预测FRAMINGHAM心脏病风险和模型诊断可视化5.R语言非线性混合效应...NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究6.R语言使用限制平均生存时间RMST比较两条生存曲线分析肝硬化患者7.分类回归决策树交互式修剪和更美观地可视化分析细胞图像分割数据集8.PYTHON

    29200

    R语言分布滞后非线性模型(DLNM)研究发病率,死亡率和空气污染示例

    p=21317 本文提供了运行分布滞后非线性模型的示例,同时描述了预测变量和结果之间的非线性和滞后效应,这种相互关系被定义为暴露-滞后-反应关联。...它在内部调用onebasis()来生成暴露-反应和滞后-反应关系的基矩阵,并通过特殊的张量积将它们组合起来,以创建交叉基,该交叉基在模型中同时指定了暴露-滞后-反应关联性。...12 然后,我应用交叉基参数化,将二次多项式作为暴露反应函数,并将分层函数2-3和4-5定义为滞后反应函数的分层函数: lag=c(2,5),argvar=list(fun="poly",degree...滞后时间设置为0到30。滞后反应函数留给默认的自然三次样条(fun =“ ns”),其滞后值为1、4和12。 预测 crossbasis()生成的交叉基矩阵需要包含在回归模型公式中才能拟合模型。...例如,我使用创建的交叉基矩阵cb,使用数据集时间序列数据来研究温度与心血管疾病死亡率之间的关联。首先,我将一个简单的线性模型与模型公式中包含的交叉基矩阵拟合。

    6K31

    相位同步6Hz经颅电-磁刺激可提高额叶theta活动和工作记忆

    在过去的十年里,要么是通过提供低强度正弦交流电流(TAC),要么是通过固定重复频率的电磁脉冲(重复经颅磁刺激-rTMS)。...WPLI是两个时间序列信号之间的相位同步化的量度,它代表交叉频谱的虚部分量的绝对值,与样本大小有关,并且对体传导噪声不那么敏感。各加权相位滞后指标用相角差的分布来表征。...瞬时相位滞后和幅值可以通过交叉功率密度谱获得。使用全局效率的图论参数在整个大脑水平上分析了功能连接。具体地,全局效率被定义为网络中所有节点之间的平均特征路径长度的倒数。...所有相关的兴趣指标都被输入到线性混合模型中,这使得我们能够灵活地对实验因素的固定影响进行建模。使用LMM能够用所有可用数据对重复测量随时间的影响进行建模,并灵活地对符合各种分布的数据进行建模。...电场模拟证实,TMS和TACS的诱导电场效应是一致的,当TMS脉冲施加在TACS诱导的正弦波的峰上时,TMS诱导的电场效应最大(图1D)。

    67520

    R语言分布滞后非线性模型(DLNM)研究发病率,死亡率和空气污染示例|附代码数据

    本文提供了运行分布滞后非线性模型的示例,同时描述了预测变量和结果之间的非线性和滞后效应,这种相互关系被定义为暴露-滞后-反应关联 数据 数据集包含1987-2000年期间每日死亡率(CVD、呼吸道),天气...它在内部调用onebasis()来生成暴露-反应和滞后-反应关系的基矩阵,并通过特殊的张量积将它们组合起来,以创建交叉基,该交叉基在模型中同时指定了暴露-滞后-反应关联性。...12 然后,我应用交叉基参数化,将二次多项式作为暴露反应函数,并将分层函数2-3和4-5定义为滞后反应函数的分层函数: lag=c(2,5),argvar=list(fun="poly",degree...滞后时间设置为0到30。滞后反应函数留给默认的自然三次样条(fun =“ ns”),其滞后值为1、4和12。 预测 crossbasis()生成的交叉基矩阵需要包含在回归模型公式中才能拟合模型。...例如,我使用创建的交叉基矩阵cb,使用数据集时间序列数据来研究温度与心血管疾病死亡率之间的关联。首先,我将一个简单的线性模型与模型公式中包含的交叉基矩阵拟合。

    51300

    R语言分布滞后非线性模型(DLNM)研究发病率,死亡率和空气污染示例|附代码数据

    本文提供了运行分布滞后非线性模型的示例,同时描述了预测变量和结果之间的非线性和滞后效应,这种相互关系被定义为暴露-滞后-反应关联 ( 点击文末“阅读原文”获取完整代码数据******** ) 。...它在内部调用onebasis()来生成暴露-反应和滞后-反应关系的基矩阵,并通过特殊的张量积将它们组合起来,以创建交叉基,该交叉基在模型中同时指定了暴露-滞后-反应关联性。...滞后时间设置为0到30。滞后反应函数留给默认的自然三次样条(fun =“ ns”),其滞后值为1、4和12。预测crossbasis()生成的交叉基矩阵需要包含在回归模型公式中才能拟合模型。...例如,我使用创建的交叉基矩阵cb,使用数据集时间序列数据来研究温度与心血管疾病死亡率之间的关联。首先,我将一个简单的线性模型与模型公式中包含的交叉基矩阵拟合。...HP滤波器,小波滤波和经验模态分解等提取周期性成分分析使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测

    80800

    Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据

    2.面板向量自回归 我们考虑具有特定面板固定效应的阶数 -变量面板 VAR,由以下线性方程组表示: 其中, 是因变量的(1)向量; 是外生协变量的(1)向量; 以及 分别是因变量特定的固定效应和特异性误差的...矩阵和 矩阵是要估计的参数。我们假设创新点具有以下特征。 上面的参数可以与固定效应联合估计,或者在一些转换后独立于固定效应,使用普通最小二乘法 (OLS)。...2.2.模型选择 面板 VAR 分析的前提是在面板 VAR 规范和矩条件中选择最佳滞后阶数。...然而,分解不是唯一的,而是取决于 中变量的顺序。 脉冲响应函数置信区间可以基于面板 VAR 参数的渐近分布和交叉方程误差方差-协方差矩阵分析导出。...与 VAR/面板 VAR 点估计类似,95% 置信区间三个估计量的 Cholesky IRF 和 FEVD 重叠。下面,我们使用三个模型展示了 inv 对inv 上一个标准差冲击的响应。 5.

    3.7K50

    期刊影响因子越高越难发吗?

    1、中科院SCI分区  中科院SCI分区是按期刊的三年的平均影响因子来划分的:  一区:前5%  二区:6%~20%  三区:21%~50%  四区:后50% 2、JCR分区  JCR分区是把某一个学科的所有期刊都按照上一年的影响因子降序排列...关于分析师在此对Xianfeng Ni对本文所作的贡献表示诚挚感谢,他在南京水利科学研究院完成了博士学位,熟练使用 C#进行 GIS 相关开发、水文模型编写、算法优化改进。...----最受欢迎的见解1.R语言分布式滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模2.R语言分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据3.R语言群组变量选择...、组惩罚GROUP LASSO套索模型预测分析新生儿出生体重风险因素数据和交叉验证、可视化4.R语言逻辑回归、随机森林、SVM支持向量机预测FRAMINGHAM心脏病风险和模型诊断可视化5.R语言非线性混合效应...NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究6.R语言使用限制平均生存时间RMST比较两条生存曲线分析肝硬化患者7.分类回归决策树交互式修剪和更美观地可视化分析细胞图像分割数据集8.PYTHON

    91110
    领券