0 相关源码 sparksql-train 1 概述 Spark SQL通过DataFrame接口支持对多种数据源进行操作。 DataFrame可使用关系型变换进行操作,也可用于创建临时视图。...将DataFrame注册为临时视图可以让你对其数据运行SQL查询。 本节介绍使用Spark数据源加载和保存数据的一般方法,并进一步介绍可用于内置数据源的特定选项。...读取文本文件的 API,SparkSession.read.text() 参数: path:读取文本文件的路径。...中的 mode SaveMode Spark SQL中,使用DataFrame或Dataset的write方法将数据写入外部存储系统时,使用“SaveMode”参数指定如何处理已存在的数据。...Parquet可与许多不同计算框架一起使用,如Hadoop、Spark、Hive等,广泛用于各种大数据应用程序。 6.3 优点 高性能、节省存储空间、支持多种编程语言和数据类型、易于集成和扩展等。
Spark SQL作为Spark生态的一员诞生,不再受限于Hive,只是兼容Hive。.../DataSet的区别 RDD: 用于Spark1.X各模块的API(SparkContext、MLLib,Dstream等) 不支持sparksql操作 不支持代码自动优化 DataFrame与DataSet...,进行 sql语句操作 支持一些方便的保存方式,比如保存成csv、json等格式 基于sparksql引擎构建,支持代码自动优化 DataFrame与DataSet的区别 DataFrame: DataFrame...3.3 Spark SQL优化 Catalyst是spark sql的核心,是一套针对spark sql 语句执行过程中的查询优化框架。...因此要理解spark sql的执行流程,理解Catalyst的工作流程是理解spark sql的关键。而说到Catalyst,就必须提到下面这张图了,这张图描述了spark sql执行的全流程。
org.apache.spark.sql.SQLContext import org.apache.spark....{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession import org.apache.spark.sql.hive.HiveContext...def main(args: Array[String]): Unit = { // val sqlQuery = Source.fromFile("path/to/data.sql...").mkString //read file val trainDataSqlFrame = sqlFromFile( "path/to/data.sql" )...").mkString //read file val trainDataSqlFrame = sqlFromFile( "path/to/data.sql" )
概述 官方地址 http://spark.apache.org/sql/ Spark SQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式...SQL查询引擎的作用。...DataFrame SparkSQL使用的数据抽象是DataFrame ,DataFrame让Spark具备了处理大数据结构化数据的能力,它不仅比原来的RDD转换方式更加简单易用,而且获得了更高的计算能力...Spark 能够轻松实现从Mysql到DataFrame的转化,并且支持SQL查询。...image.png DataFrame创建 从Spark2.0以上版本开始,Spark使用全新的SparkSession接口代替Spark1.6的SQLContex以及HiveContext接口
Shark即Hive on Spark,为了实现与Hive兼容,Shark在HiveQL方面重用了Hive中HiveQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MapReduce...:Spark SQL和Hive on Spark。...(二)Spark SQL架构 Spark SQL架构如图所示,Spark SQL在Hive兼容层面仅依赖HiveQL解析、Hive元数据,也就是说,从HQL被解析成抽象语法树(AST)起...Spark SQL填补了这个鸿沟: 首先,可以提供DataFrame API,可以对内部和外部各种数据源执行各种关系型操作 其次,可以支持大数据中的大量数据源和数据分析算法 Spark SQL可以融合:...这是因为与MySQL数据库的SSL连接失败了,我们只需要将数据源的URL后面添加**?useSSL=false**就可以解决,也就是禁用SSL: 再次运行代码,就OK了。
Spark学习之Spark SQL(8) 1. Spark用来操作结构化和半结构化数据的接口——Spark SQL、 2....Spark SQL的三大功能 2.1 Spark SQL可以从各种结构化数据(例如JSON、Hive、Parquet等)中读取数据。...2.2 Spark SQL不仅支持在Spark程序内使用SQL语句进行查询,也支持从类似商业智能软件Tableau这样的外部工具中通过标准数据库连接器(JDBC/ODBC)连接Spark SQL进行查询...2.3 当在Spark程序内使用Spark SQL时,Spark SQL支持SQ与常规的Python/Java/Scala代码高度整合,包括连接RDD与SQL表、公开的自定义SQL函数接口等。 3....连接Spark SQL 带有Hive支持的Spark SQL的Maven索引 groupID =org.apache.spark artifactID = spark-hive_2.10
问题导读 1.你认为如何初始化spark sql? 2.不同的语言,实现方式都是什么? 3.spark sql语句如何实现在应用程序中使用?...为了使用spark sql,我们构建HiveContext (或则SQLContext 那些想要的精简版)基于我们的SparkContext.这个context 提供额外的函数为查询和整合spark sql...初始化spark sql 为了开始spark sql,我们需要添加一些imports 到我们程序。如下面例子1 例子1Scala SQL imports [Scala] 纯文本查看 复制代码 ?...// Import Spark SQL import org.apache.spark.sql.hive.HiveContext // Or if you can't have the hive dependencies...import org.apache.spark.sql.SQLContext; // Import the JavaSchemaRDD import org.apache.spark.sql.SchemaRDD
需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。...即使没有部署好 Hive,Spark SQL 也可以运行。...2.2 启动 spark-sql 在spark-shell执行 hive 方面的查询比较麻烦.spark.sql("").show Spark 专门给我们提供了书写 HiveQL 的工具: spark-sql...// 一般用于测试学习 [bigdata@hadoop002 spark]$ bin/spark-sql spark-sql> select count(*) from emp; ?...// 先创建一个数据库 // 创建一次就行否则会报错 spark.sql("create database spark0806").show spark.sql("use spark0806
df: DataFrame = spark.read.text("/Users/javaedge/Downloads/sparksql-train/data/input.txt") // TODO...2.2 Spark SQL的DataFrame优点 可通过SQL语句、API等多种方式进行查询和操作,还支持内置函数、用户自定义函数等功能 支持优化器和执行引擎,可自动对查询计划进行优化,提高查询效率...生态系统:Spark生态系统提供了许多额外的库和工具,例如Spark Streaming和GraphX等,这些库和工具可以与PySpark无缝集成。...通过调用该实例的方法,可以将各种Scala数据类型(如case class、元组等)与Spark SQL中的数据类型(如Row、DataFrame、Dataset等)之间进行转换,从而方便地进行数据操作和查询...在使用许多Spark SQL API的时候,往往需要使用这行代码将隐式转换函数导入当前上下文,以获得更加简洁和易于理解的代码编写方式。 如果不导入会咋样 如果不导入spark.implicits.
但是最最重要的就是多了一个Spark SQL的功能,它能对RDD进行Sql操作,目前它只是一个alpha版本,喜欢尝鲜的同志们进来看看吧,下面是它的官网的翻译。...Spark SQL是支持在Spark中使用Sql、HiveSql、Scaca中的关系型查询表达式。...val sc: SparkContext // 已经存在的SparkContext val sqlContext = new org.apache.spark.sql.SQLContext(sc) import...sqlContext._ Running SQL on RDDs Spark SQL支持的一种表的类型是Scala的case class,case class定义了表的类型,下面是例子: val sqlContext...INT, value STRING)") hql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src
一、 数据准备 本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。...如下: spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show() 2.2 FULL OUTER...JOIN empDF.join(deptDF, joinExpression, "outer").show() spark.sql("SELECT * FROM emp FULL OUTER JOIN...三、连接的执行 在对大表与大表之间进行连接操作时,通常都会触发 Shuffle Join,两表的所有分区节点会进行 All-to-All 的通讯,这种查询通常比较昂贵,会对网络 IO 会造成比较大的负担...是否采用广播方式进行 Join 取决于程序内部对小表的判断,如果想明确使用广播方式进行 Join,则可以在 DataFrame API 中使用 broadcast 方法指定需要广播的小表: empDF.join
Java版本: import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function...; import org.apache.spark.api.java.function.MapFunction; import org.apache.spark.sql.Dataset; import...org.apache.spark.sql.Row; import org.apache.spark.sql.Encoder; import org.apache.spark.sql.Encoders;...Java版本: import java.util.ArrayList; import java.util.List; import org.apache.spark.api.java.JavaRDD...; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row
/ 发家史 / 熟悉 Spark SQL 的都知道,Spark SQL 是从 Shark 发展而来。...Spark SQL Spark SQL 提供了多种接口: 纯 Sql 文本; dataset/dataframe api。.../ Dataframe/Dataset API 简介 / Dataframe/Dataset 也是分布式数据集,但与 RDD 不同的是其带有 schema 信息,类似一张表。...编程 / Spark SQL 允许用户提交 SQL 文本,支持以下三种手段编写 SQL 文本: 1. spark 代码 2. spark-sql的shell 3. thriftserver 支持...总体执行流程如下:从提供的输入 API(SQL,Dataset, dataframe)开始,依次经过 unresolved 逻辑计划,解析的逻辑计划,优化的逻辑计划,物理计划,然后根据 cost based
Spark SQL基础 Hive Hive会将SQL语句转成MapReduce作业,本身不执行SQL语句。...基本上和Hive的解析过程、逻辑执行等相同 将mapreduce作业换成了Spark作业 将HiveQL解析换成了Spark上的RDD操作 存在的两个主要问题: spark是线程并行,mapreduce...是进程级并行 spark在兼容Hive的基础上存在线程安全性问题 Spark SQL 产生原因 关系数据库在大数据时代下不再满足需求: 用户要从不同的数据源操作不同的数据,包含结构化和非结构化...用户需要执行高级分析,比如机器学习和图形处理等 大数据时代经常需要融合关系查询和复杂分析算法 Spark SQL解决的两大问题: 提供DF API,对内部和外部的各种数据进行各种关系操作 支持大量的数据源和数据分析算法...,可以进行融合 架构 Spark SQL在Hive 兼容层面仅仅是依赖HiveQL解析、Hive元数据 执行计划生成和优化是由Catalyst(函数式关系查询优化框架)负责 Spark SQL中增加了数据框
一、目的与要求 1、通过实验掌握Spark SQL的基本编程方法; 2、熟悉RDD到DataFrame的转化方法; 3、熟悉利用Spark SQL管理来自不同数据源的数据。...二、实验内容 1、Spark SQL基本操作 将下列JSON格式数据复制到Linux系统中,并保存命名为employee.json。...mysql> select * from employee; 四、结果分析与实验体会 Spark SQL是Apache Spark中用于处理结构化数据的模块。...可以使用SparkSession的sql方法执行SQL查询。除了使用SQL查询外,还可以使用DataFrame的API进行数据操作和转换。可以使用DataFrame的write方法将数据写入外部存储。...最后,还掌握了RDD到DataFrame的转化方法,并可以利用Spark SQL管理来自不同数据源的数据。
与该参数相关的一个参数是spark.sql.hive.convertMetastoreParquet.mergeSchema, 如果也是true,那么将会尝试合并各个parquet 文件的schema,...This flag tells Spark SQL to interpret INT96 data as a timestamp to provide compatibility with these.... spark.sql.parquet.mergeSchema FALSE When true, the Parquet data source merges schemas collected from...use when Spark writes data to Parquet files....to use when shuffling data for joins or aggregations. spark.sql.sources.bucketing.enabled TRUE When
Spark SQL 的核心是Catalyst优化器,首先将SQL处理成未优化过的逻辑计划(Unresolved Logical Plan),其只包括数据结构,不包含任何数据信息。...生成的物理执行计划与直接执行RDD程序相似。 ? Flink SQL 是Fllink提供的SQL的SDK API。...SQL是比Table更高阶的API,集成在Table library中提供,在流和批上都可以用此API开发业务。 ?...也就是说和spark不同, flink 的SQL Parsing, Analysing, Optimizing都是托管给calcite(flink会加入一些optimze rules)....SQL import org.apache.spark.sql.Dataset; import org.apache.spark.sql.SparkSession; public class SparkSQLTest
随着Spark SQL和Apache Spark effort(HIVE-7292)上新Hive的引入,我们被问到了很多关于我们在这两个项目中的地位以及它们与Shark的关系。...特别是,Spark SQL将提供来自Shark 0.9服务器的无缝升级路径以及与一般Spark程序集成的新功能。...对于SQL用户,Spark SQL提供了最先进的SQL性能并保持与Shark / Hive的兼容性。...它真正统一了SQL和复杂的分析,允许用户混合和匹配SQL和更高级的分析的命令性编程API。 对于开源黑客,Spark SQL提出了一种创新的,优雅的构建查询规划器的方法。...我们很高兴与Hive社区合作并提供支持,为最终用户提供流畅的体验。 总之,我们坚信Spark SQL不仅是SQL的未来,而且还是在Spark上的结构化数据处理的未来。
当我们在spark-shell用scala写程序的时候,如何不嵌入sql来查询Hive呢?...Estimated from input data size: 12 In order to change the average load for a reducer (in bytes): set...API 下面是对应的scala程序: import org.apache.spark.sql.Row import org.apache.spark.sql.SparkSession //Hive...().appName("Spark Hive Example").config("spark.sql.warehouse.dir", warehouseLocation).enableHiveSupport...().getOrCreate() import spark.implicits._ import spark.sql /* Spark SQL caches Parquet metadata for
什么是 Spark SQL Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块. ...与基本的 Spark RDD API 不同, Spark SQL 的抽象数据类型为 Spark 提供了关于数据结构和正在执行的计算的更多信息. ...在内部, Spark SQL 使用这些额外的信息去做一些额外的优化. 有多种方式与 Spark SQL 进行交互, 比如: SQL 和 Dataset API...., 所以 Spark SQL 的应运而生,它是将 Spark SQL 转换成 RDD,然后提交到集群执行,执行效率非常快!...Uniform Data Access(统一的数据访问方式) 使用相同的方式连接不同的数据源. ? 3.