首页
学习
活动
专区
圈层
工具
发布

使用Tensorflow Object Detection API实现对象检测

一:预训练模型介绍 Tensorflow Object Detection API自从发布以来,其提供预训练模型也是不断更新发布,功能越来越强大,对常见的物体几乎都可以做到实时准确的检测,对应用场景相对简单的视频分析与对象检测提供了极大的方便与更多的技术方案选择...tensorflow object detection提供的预训练模型都是基于以下三个数据集训练生成,它们是: COCO数据集 Kitti数据集 Open Images数据集 每个预训练模型都是以tar...二:使用模型实现对象检测 这里我们使用ssd_mobilenet模型,基于COCO数据集训练生成的,支持90个分类物体对象检测,首先需要读取模型文件,代码如下 tar_file = tarfile.open...- 检测人与书 ?...检测我的苹果电脑与喝水玻璃杯 ?

1.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    tensorflow读取数据-tfrecord格式

    概述关于tensorflow读取数据,官网给出了三种方法: 1、供给数据:在tensorflow程序运行的每一步,让python代码来供给数据 2、从文件读取数据:建立输入管线从文件中读取数据 3、预加载数据...这里主要介绍一种比较通用、高效的数据读取方法,就是tensorflow官方推荐的标准格式:tfrecord。...tfrecord数据文件 tfrecord数据文件是一种将图像数据和标签统一存储的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储等。...如下图: AnimatedFileQueues.gif 解析器首先读取解析队列,返回serialized_example对象,之后调用tf.parse_single_example操作将Example...这两句实现的功能就是创建线程并使用QueueRunner对象来提取数据。简单来说:使用tf.train函数添加QueueRunner到tensorflow中。

    2.9K60

    【TensorFlow】TFRecord文件使用详解

    文件的原因 5 参考资料 TFRecord文件概述 TFRecord 是谷歌推荐的一种二进制文件格式,理论上它可以保存任何格式的信息。...序列化: 将数据结构或对象转换成 二进制串的过程。 反序列化:将在序列化过程中所生成的二进制串 转换成 数据结构或者对象 的过程。...所以 TFRecord 可以存储几乎任何格式的信息。 值得注意的是,更具官方说明的文档来源于 Tensorflow的源码,里面有更加详细的定义及注释说明。...创建Example对象,示例代码如下: #创建Example对象,并将Feature一一填充进去。...它特别适应于 Tensorflow ,或者说它就是为 Tensorflow 量身打造的。 因为 Tensorflow开发者众多,统一训练时数据的文件格式是一件很有意义的事情。

    2.3K30

    Tensorflow数据读取之tfrecord

    文章目录 tfrecord tfrecord的使用流程 写入tfrecord文件 读取tfrecord文件 tfrecord中的数据格式 tfrecord中对于变长数据和定长数据的处理 tfrecord...: 1.供给数据(Feeding): 在TensorFlow程序训练或者测试的每一个epoch,在tf.Session().run()函数中,以字典的形式通过feed_dict参数进行赋值。...2.从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。 3.预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。...截止到目前为止,由于我使用tensorflow的时间不长,次数不多,所以只是尝试过第一种和第三种方法。...最近刚刚尝试了第三种方法,使用的是tensorflow内定的标准读取数据的格式—tfrecord,在这里记录一下。

    1.1K20

    TensorFlow TFRecord数据集的生成与显示

    TensorFlow提供了TFRecord的格式来统一存储数据,TFRecord格式是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等...利用下列代码将图片生成为一个TFRecord数据集: import os import tensorflow as tf from PIL import Image import matplotlib.pyplot...将图片形式的数据生成多个TFRecord 当图片数据量很大时也可以生成多个TFRecord文件,根据TensorFlow官方的建议,一个TFRecord文件最好包含1024个左右的图片,我们可以根据一个文件内的图片个数控制最后的文件个数...一个TFRecord文件中存放的图片个数最多为1200个,如果超过了就会写入第二个TFRecord文件中: import os import tensorflow as tf from PIL import...': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), })) #example对象对

    7.3K145

    【他山之石】Tensorflow之TFRecord的原理和使用心得

    Tensorflow提供了一种解决方法:spark-tensorflow-connector,支持将spark DataFrame格式数据直接保存为TFRecords格式数据,接下来就带大家了解一下TFRecord...01 TFRecord介绍 TFRecord是Tensorflow训练和推断标准的数据存储格式之一,将数据存储为二进制文件(二进制存储具有占用空间少,拷贝和读取(from disk)更加高效的特点),...02 TFRecord构成 ? 它实质上是由protobuf定义的一种数据协议,其中tensorflow提供了两种Example表示形式 Example和SequenceExample。...的读取 在模型训练的时候需要读取TFRecord文件,有三个步骤: 1、首先通过tf.data.TFRecordDataset() API读取TFRecord文件并创建dataset; 2、定义schema...06 Read More https://www.tensorflow.org/tutorials/load_data/tfrecord https://github.com/tensorflow/ecosystem

    2.7K10

    tensorflow Object Detection API使用预训练模型mask r-cnn实现对象检测

    这里主要想介绍一下在tensorflow中如何使用预训练的Mask R-CNN模型实现对象检测与像素级别的分割。...tensorflow框架有个扩展模块叫做models里面包含了很多预训练的网络模型,提供给tensorflow开发者直接使用或者迁移学习使用,首先需要下载Mask R-CNN网络模型,这个在tensorflow...category_index = label_map_util.create_category_index(categories) 有了这个之后就需要从模型中取出如下几个tensor num_detections 表示检测对象数目...detection_masks'] = output_dict['detection_masks'][0] return output_dict 下面就是通过opencv来读取一张彩色测试图像,然后调用模型进行检测与对象分割...检测运行结果如下: ? 带mask分割效果如下: ? 官方测试图像运行结果: ?

    6.1K30

    Tensorflow之TFRecord的原理和使用心得

    Tensorflow提供了一种解决方法: spark-tensorflow-connector,支持将spark DataFrame格式数据直接保存为TFRecords格式数据,接下来就带大家了解一下TFRecord...TFRcord介绍 TFRecord是Tensorflow训练和推断标准的数据存储格式之一,将数据存储为二进制文件(二进制存储具有占用空间少,拷贝和读取(from disk)更加高效的特点),而且不需要单独的标签文件了...每个Example会序列化成字节字符串并写入TFRecord文件中,代码如下: import tensorflow as tf # 回忆上一小节介绍的,每个Example内部实际有若干种Feature...的读取 在模型训练的时候需要读取TFRecord文件,有三个步骤: 1、首先通过tf.data.TFRecordDataset() API读取TFRecord文件并创建dataset; 2、定义schema...=0.0), 'comment': tf.FixedLenFeature([], tf.string, default_value=''), } # 使用相关api

    96220

    使用Tensorflow进行实时移动视频对象检测

    为减少障碍,Google发布了Tensorflow对象检测API和Tensorflow Hub等开源工具,使人们能够利用那些已经广泛使用的预先训练的模型(例如Faster R-CNN,R-FCN和SSD...本文旨在展示如何通过以下步骤使用TensorFlow的对象检测API训练实时视频对象检测器并将其快速嵌入到自己的移动应用中: 搭建开发环境 准备图像和元数据 模型配置和训练 将训练后的模型转换为TensorFlow...model scripts git clone https://github.com/tensorflow/models tf-models 安装Tensorflow对象检测API和依赖项 一旦完成了项目设置...(可选)要在Tensorflow对象检测API代码基础之上进行进一步的工作,请检出model_main.py并model_lib.py作为起点。 现在,需要安装其余的依赖项。...对象检测API中的python模块添加到搜索路径中,稍后将在模型脚本中调用它们。

    3K00

    用 TensorFlow 目标检测 API 发现皮卡丘!

    翻译 | 于志鹏 整理 | 吴璇 在 TensorFlow 众多功能和工具中,有一个名为 TensorFlow 目标检测 API 的组件。...数月之后,我开始着手优化我之前训练的检测皮卡丘的模型,目的是直接使用 Python、OpenCV、以及 TensorFlow 来检测视频中的目标。源代码可以从我的 GitHub 中获取。...我的大部分代码都是基于 TensorFlow 目标检测 repo 提供的 Python notebook 实现的。这些代码完成了大部分困难的工作,因为它包括很多功能,可以简化检测过程。...为创建这个视频,需要用到 VideoWriter 对象,每次遍历时,帧的副本都会被写入这个对象(不含声音)。 结果和讨论 这两个视频显示了模型的运行过程: ? ? 第一个视频的检测非常好。...总结与回顾 在这篇文章中,我介绍了如何使用 TensorFlow 目标检测库在视频中检测皮卡丘。文章开头,介绍了一些我之前的工作,使用模型的早期版本在安卓设备上进行目标检测。

    1K50

    tensorflow对象检测框架训练VOC数据集常见的两个问题

    tensorflow对象检测框架 Tensorflow自从发布了object detection API这套对象检测框架以来,成为很多做图像检测与对象识别开发者手中的神兵利器,因为他不需要写一行代码,...就可以帮助开发者训练出一个很好的自定义对象检测器(前提是有很多标注数据)。...我之前曾经写过几篇文章详细介绍了tensorflow对象检测框架的安装与使用,感兴趣可以看如下几篇文章!...但是在windows下安装tensorflow对象检测框架并进行训练初学者需要跨越两个大坑 ? VOC数据生成 制作VOC2012数据集并生成tfrecord。...生成VOC格式的数据集,需要运行如下脚本文件 create_pascal_tf_record.py 才会生成tfrecord,但是基于自定义数据集,一运行脚本时候就会得到下面的错误: ?

    2.4K30

    【教程】使用TensorFlow对象检测接口标注数据集

    当为机器学习对象检测和识别模型构建数据集时,为数据集中的所有图像生成标注非常耗时。而这些标注是训练和测试模型所必需的,并且标注必须是准确的。因此,数据集中的所有图像都需要人为监督。...本文的目的是要证明,对于不需要高精度的物体识别和检测任务,小的数据集和“开箱即用”的模型就可以提供不错的结果。 以图像中的赛车检测为例,本文将通过以下步骤进行指导: 1. 在小数据集中标注图像。...本文假设你已经安装了TensorFlow Object Detection API。...https://github.com/AndrewCarterUK/tf-example-object-detection-api-race-cars/tree/master/data 训练模型 该TensorFlow...将PASCAL VOC原始数据集转换为TFRecord文件。范例库提供了一个可用于执行此操作的Python脚本。 2. 创建一个对象检测管道。

    2.1K70

    TensorFlow:使用Cloud TPU在30分钟内训练出实时移动对象检测器

    编译:yxy 出品:ATYUN订阅号 是否能够更快地训练和提供对象检测模型?...,可以对狗和猫品种进行实时检测,并且手机上的空间不超过12M。请注意,除了在云中训练对象检测模型之外,你也可以在自己的硬件或Colab上运行训练。...链接:https://www.tensorflow.org/install/install_sources 安装TensorFlow对象检测 如果这是你第一次使用TensorFlow对象检测,欢迎!...我们可以使用许多模型来训练识别图像中的各种对象。我们可以使用这些训练模型中的检查点,然后将它们应用于我们的自定义对象检测任务。...配置中的以下几行告诉我们的模型,我们将从预先训练的检查点开始进行对象检测的迁移学习。

    5.5K50

    【Tensorflow】你可能无法回避的 TFRecord 文件格式详细讲解

    如果你是 Tensorflow 的初学者,那么你或多或少在网络上别人的博客上见到过 TFRecord 的影子,但很多作者都没有很仔细地对它进行说明,这也许会让你感受到了苦恼。...但对于我们普通开发者而言,我们并不需要关心这些,Tensorflow 提供了丰富的 API 可以帮助我们轻松读写 TFRecord 文件。...所以 TFRecord 可以存储几乎任何格式的信息。 但需要说明的是,更官方的文档来源于 Tensorflow的源码,这里面有详细的定义及注释说明。 为什么要用 TFRecord ?...TFRecord 也不是非用不可,但它确实是谷歌官方推荐的文件格式。 1、它特别适应于 Tensorflow ,或者说它就是为 Tensorflow 量身打造的。...事实上,Tensorflow 给我们提供了丰富的 API ,开发者运用这些 API 可以轻松地处理 TFRecord 文件。

    3.1K40

    【干货】手把手教你用苹果Core ML和Swift开发人脸目标识别APP

    TensorFlow对象目标检测API demo可以让您识别图像中目标的位置,这可以应用到一些很酷的的应用程序中。 有时我们可能会拍摄更多人物照片而不是景物照片,所以可以用同样的技术来识别人脸。...对象检测API是基于TensorFlow构建的框架,用于在图像中识别对象。...例如,你可以用许多猫的照片来训练对象检测器,一旦训练好了你就可以输入一个待遇测的猫的图像,它会返回一个矩形列表,每个矩形中有一个猫。虽然是API,但您可以把它看作是一组用于迁移学习的方便实用的工具。...),博文中介绍了如何用TF对象检测训练一个浣熊探测器。...由于对象检测API(Object Detection API)会输出对象在图像中的位置,因此不能将图像和标签作为训练数据传递给对象。

    19.8K60

    算法集锦(10)| 自动驾驶、机器人 | 物品图像动态检测算法实现

    今天,我们将介绍Google的Tensorflow物品检测API及Mask R-CNN技术,并将之应用于实际的物品动态检测中。 ?...Tensorflow物品检测API Tensorflow 物品检测API是在COCO数据集(Conmmon Objects in Context)上进行训练的。...实例分割算法有很多种,在最新的Tensorflow物品检测API中,Google使用了Mask R-CNN技术,从而可以实现对图像的像素级检测。...视频物品检测 上面介绍了tensorflow物品检测API和Mask R-CNN技术,接下来我们就利用它们来实现一个玩具小车的动态检测。...步骤2:创建tensorflow记录(TF Records) tensorflow物品检测模型需要输入TFRecord文件,该文件将图像、边界框、mask等因素整个压缩到一起,所以训练模型时仅需调用一个文件就可以了

    1K30

    Python 数据科学入门教程:TensorFlow 目标检测

    二、视频流的目标检测 欢迎阅读 TensorFlow 目标检测 API 教程的第二部分。...在下一个教程中,我们将介绍如何添加我们自己的自定义对象来跟踪。 三、跟踪自定义对象 欢迎阅读 TensorFlow 目标检测 API 系列教程的第 3 部分。...四、创建 TFRecord 欢迎阅读 TensorFlow 目标检测 API 系列教程的第 4 部分。在本教程的这一部分,我们将介绍如何创建 TFRecord 文件,我们需要它来训练对象检测模型。...五、训练自定义对象检测器 欢迎阅读 TensorFlow 对象检测 API 系列教程的第 5 部分。在本教程的这一部分,我们将训练我们的对象检测模型,来检测我们的自定义对象。...为了使用模型来检测事物,我们需要导出图形,所以在下一个教程中,我们将导出图形,然后测试模型。 六、测试自定义对象检测器 欢迎阅读 TensorFlow 对象检测 API 教程系列的第 6 部分。

    1.8K30
    领券