首页
学习
活动
专区
圈层
工具
发布

Google发布tf.Transform,让数据预处理更简单

用户通过组合模块化Python函数来定义流程,然后tf.Transform用Apache Beam(一个用于大规模,高效,分布式数据处理的框架)来执行它。...Apache Beam流程可以在Google Cloud Dataflow上运行,并计划支持使用其他框架运行。...在使用训练过的模型做预测是,通过tf.Transform导出的TensorFlow计算图可以复制预处理步骤。...当训练时和服务时在不同的环境(例如Apache Beam和TensorFlow)中对数据进行预处理时,就很容易发生这个问题。...理解数据在每个机器学习项目中非常重要,因为对底层数据做出错误假设可能会产生微妙的错误。通过使简要统计的计算变得容易和高效,tf.Transform允许用户检查他们关于原始数据和预处理数据的假设。 ?

1.7K90

如何确保机器学习最重要的起始步骤"特征工程"的步骤一致性?

用户通过组合模块化 Python 函数来定义管道,然后 tf.Transform 随着 Apache Beam 一起运行。...tf.Transform 导出的 TensorFlow 图形可以在使用训练模型进行预测时复制预处理步骤,比如在使用 TensorFlow Serving 服务模型时。...但是不太幸运的是,这种方法不允许我们在服务时(即在生产环境中使用训练模型时)重复使用相同的代码作为 TensorFlow 图形的一部分运行。...我们在训练期间使用 Apache Beam 执行后续预处理步骤,并在服务期间作为 API 的一部分执行。...预处理 使用 tf.Transform 函数,Apache Beam 将完成预处理(制作训练示例)。 预处理阶段包括 4 个步骤,代码如下: 1.

83820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何确保机器学习最重要的起始步骤特征工程的步骤一致性?

    用户通过组合模块化 Python 函数来定义管道,然后 tf.Transform 随着 Apache Beam 一起运行。...tf.Transform 导出的 TensorFlow 图形可以在使用训练模型进行预测时复制预处理步骤,比如在使用 TensorFlow Serving 服务模型时。...但是不太幸运的是,这种方法不允许我们在服务时(即在生产环境中使用训练模型时)重复使用相同的代码作为 TensorFlow 图形的一部分运行。...我们在训练期间使用 Apache Beam 执行后续预处理步骤,并在服务期间作为 API 的一部分执行。...预处理 使用 tf.Transform 函数,Apache Beam 将完成预处理(制作训练示例)。 预处理阶段包括 4 个步骤,代码如下: 1.

    1.2K20

    【头条】谷歌发布全新TensorFlow 库tf.Transform;百度将Ring Allreduce算法引入深度学习

    用户可以通过组合 Python 函数来定义该流水线,然后在 Apache Beam 框架下通过 tf.Transform 执行。...(注:Apache Beam 是一个用于大规模的、高效的、分布式的数据处理的开源框架)目前,基于 Apache Beam 框架的流水线可以在 Google Cloud Dataflow 平台上运行,并计划在未来支持更多的平台...(可能包括 Apache Apex,Apache Flink 和 Apache Spark 等)。...值得一提的是,通过 tf.Transform 导出的 TensorFlow 计算图还可以在模型预测阶段将这种数据预处理步骤复用(例如,通过 Tensorflow Serving 提供模型时)。”...与现有凌动产品线面向移动设备的定位不同,Atom C3000 的服务对象将是存储阵列、网络设备和物联网设备。将为它们带来更强大的数据处理能力。

    1.5K40

    Apache Beam 架构原理及应用实践

    Apache Beam 的定义如上图,其定位是做一个统一前后端的模型。其中,管道处理和逻辑处理是自己的,数据源和执行引擎则来自第三方。那么,Apache Beam 有哪些好处呢?...create()) // PCollection 在写入 Kafka 时完全一次性地提供语义,这使得应用程序能够在 Beam 管道中的一次性语义之上提供端到端的一次性保证...它确保写入接收器的记录仅在 Kafka 上提交一次,即使在管道执行期间重试某些处理也是如此。重试通常在应用程序重新启动时发生(如在故障恢复中)或者在重新分配任务时(如在自动缩放事件中)。...那我们看一下 Beam 有哪些大厂在使用。 知道他们使用 Beam ,咱们了解一下他们用 Beam 做了什么?...例如: 使用 Apache Beam 进行大规模流分析 使用 Apache Beam 运行定量分析 使用 Apache Beam 构建大数据管道 从迁移到 Apache Beam 进行地理数据可视化 使用

    3.9K20

    TensorFlow数据验证(TensorFlow Data Validation)介绍:理解、验证和监控大规模数据

    TFDV API旨在使连接器能够使用不同的数据格式,并提供灵活性和扩展性。 连接器:TFDV使用Apache Beam来定义和处理其数据管线。...这些自定义统计信息在同一statistics.proto中序列化,可供后续的库使用。 扩展:TFDV创建一个Apache Beam管线,在Notebook环境中使用DirectRunner执行。...Apache Flink和Apache Beam社区也即将完成Flink Runner。...请关注JIRA ticket、Apache Beam博客或邮件列表获取有关Flink Runner可用性的通知。 统计信息存储在statistics.proto中,可以在Notebook中显示。 ?...用户通过组合模块化Python函数来定义管线,然后tf.Transform随Apache Beam(一个用于大规模,高效,分布式数据处理的框架)执行。 TFT需要指定模式以将数据解析为张量。

    2.2K40

    Python 对象持久化有什么用?

    又比如多个客户端和进程如何在系统层面共享变量? 因此可以采用python自带的pickle将对象序列化以及反序列化,以文件作为中转站做到全局共享对象或者临时文件存储对象。...python2.7则使用:import cPickle as pickle python3 则使用:import pickle python2 其实直接pickle也可以,但是他有c重写编译的包,速度更快.../pickle_obj.txt") as f: tmp_obj = pickle.load(f) print("3",time.time()) print(len(tmp_obj)) 如果你在...not 'str' 是因为,pickle默认操作二进制文件(写入的是对象),使用文件函数的时候需要注意,否则出现 TypeError 则open函数参数更改为 wb 就可以正常运行 。...因为存入的是对象是二进制数据,因此如果直接打开文本基本无法理解。 原创文章,转载请注明: 转载自URl-team 本文链接地址: Python 对象持久化有什么用?

    66510

    深度学习对话系统实战篇 -- 简单 chatbot 代码实现

    ,所以基本上大同小异,但是在实际使用过程中会发现一个问题,由于 tf 版本之间的兼容问题导致这些代码在新版本的 tf 中无法正常运行,常见的几个问题主要是: seq2seq API 从 tf.nn 迁移到了...deepcopy(cell) 这个函数经常会爆出(TypeError: can't pickle _thread.lock objects)的错误 关于上面第三个错误这里多说几句,因为确实困扰了我很久...第二种方案是在 tf 内模型构建时进行,这样做的好处是速度快但是比较麻烦。...在网上找了很久在 tensorflow 的一个 issue(http://t.cn/R8M6mDo ) 里面发现了一个方案,他的思路是修改 loop_function 函数,也就是之前根据上一时刻输出得到下一时刻输入的函数...,在 loop function 里面实现 top_k 取出概率最大的几个序列,并把相应的路径和单词对应关系保存下来。

    2.2K80

    学习廖雪峰Python3教程的pytho

    import pickle     d = {"name":"Alice","age":22,"score":88}     pickle.dumps(d)     pickle.dumps()方法可以把任意的对象序列化成一个...pickle.dump(d,f)     同样我们把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以用pickle.load()方法从一个文件对象中直接反序列化出对象...with open("dump.txt","rb")as f:           d = pickle.load(f)           print(d) Pickle的问题和所有其他编程语言特有的序列化问题一样...                self.score = score     s = Student("Bob",22,88)     print(json.dumps(s))     运行代码将会得到一个TypeError...student2dict函数转化为dict,然后再被序列化为JSON     print(json.dumps(s,default=student2dict))     下次遇到别的类的实例同样也无法序列化为

    94820

    介绍Python的魔术方法 - Mag

    本文中用到的代码示例,可以在我的github下载到。 构造和初始化 __init__我们很熟悉了,它在对象初始化的时候调用,我们一般将它理解为"构造函数"....__new__在创建一个实例的过程中必定会被调用,但__init__就不一定,比如通过pickle.load的方式反序列化一个实例时就不会调用__init__。...在面向对象编程时,如果一个类的属性有相互依赖的关系时,使用描述器来编写代码可以很巧妙的组织逻辑。...__很类似,只不过返回的参数元组将传值给__new__ __getstate__(self) 在调用pickle.dump时,默认是对象的__dict__属性被存储,如果你要修改这种行为,可以在__getstate...如果过程中转化失败,抛出TypeError。 比如对于coerce(10, 10.1), 因为10和10.1在进行算术运算时,会先将10转为10.0再来运算。

    1.4K20

    Python IO

    当用二进制模式打开文件时,返回的对象也会变化。 在二进制读取模式,返回一个BufferedReader。 在二进制写模式和二进制追加模式,返回一个BufferedWriter。...当mode=r时, 指针是指向0(文件开始),当mode=a时, 指针指向EOF(文件末尾) 和文件指针相关的两个函数是tell函数和seek函数 tell函数 返回当前流的位置,对于文件来说,就是文件流的位置...# 具体实现依赖操作系统, 如果操作系统实现了 rename系统调用, 直接走rename系统调用,如果没实现,先使用copytree复制, 然后使用rmtree删除源文件 序列化和反序列化 序列化:...对象转化为数据 反序列化: 数据转化为对象 Python私有协议pickle pickle 是Python私有的序列化协议 pickle源代码见:lib/python3.5/pickle.py 主要函数...dumps 对象导出为数据,即序列化 loads 数据载入为对象,即反序列化,反序列化一个对象时,必须存在此对象的类 In [1]: import pickle In [2]: class A: #

    1.1K10

    Python 编程 | 连载 21 -序列化与加密模块

    json 和 pickle 模块 json模块中的序列化和反序列化的方法 方法 参数 描述 使用 返回值 dumps() obj 对象序列化 json.dumps([1,2]) 字符串 loads()...str 反序列化 json.loads('[1,2]') 原始数据类型 pickle模块中的序列化和反序列化的方法 方法 参数 描述 使用 返回值 dumps() obj 对象序列化 json.dumps...([1,2]) byte loads() byte 反序列化 json.loads('[1,2]') 原始数据类型 json 模块和 pickle 模块的序列化和反序列化的函数是一致的,不同的是序列化的返回值和反序列化的参数...) except TypeError as e: print(e) finally: print('序列化完毕') class、function 都无法序列化 import pickle...hashlib 和 base64 两个模块 方法 参数 方法描述 使用 返回值 md5() byte md5算法加密 hashlib.md5(b'hallo') Hash对象 sha1() byte

    41520

    LinkedIn 使用 Apache Beam 统一流和批处理

    LinkedIn 使用 Apache Beam 统一流和批处理 翻译自 LinkedIn Unifies Stream and Batch Processing with Apache Beam 。...标准化需要使用两种方法进行数据处理:实时计算以反映即时更新和定期回填以在引入新模型时刷新数据。...当实时计算和回填处理作为流处理时,它们通过运行 Beam 流水线的 Apache Samza Runner 执行。...使用 Apache Beam 意味着开发人员可以返回处理一个源代码文件。 解决方案:Apache Beam Apache Beam 是一个开源的统一的模型,用于定义批处理和流处理的数据并行处理流水线。...这段代码片段由 Samza 集群和 Spark 集群执行。 即使在使用相同源代码的情况下,批处理和流处理作业接受不同的输入并返回不同的输出,即使在使用 Beam 时也是如此。

    32510

    Apache Beam:下一代的数据处理标准

    Apache Beam(原名Google DataFlow)是Google在2016年2月份贡献给Apache基金会的孵化项目,被认为是继MapReduce、GFS和BigQuery等之后,Google...Beam SDK 不同于Apache Flink或是Apache Spark,Beam SDK使用同一套API表示数据源、输出目标以及操作符等。...,例如计算每小时团队分数时,对于一小时的时间窗口,默认是在一小时的数据全部到达后,把最终的计算结果输出,但是流处理系统应该同时支持在一小时窗口只有部分数据到达时,就将部分计算结果输出,从而使得用户可以得到实时的分析结果...总结 Apache Beam的Beam Model对无限乱序数据流的数据处理进行了非常优雅的抽象,“WWWH”四个维度对数据处理的描述,十分清晰与合理,Beam Model在统一了对无限数据流和有限数据集的处理模式的同时...此外,由于Apache Beam已经进入Apache Incubator孵化,读者也可以通过官网或是邮件组了解更多Apache Beam的进展和状态。

    1.8K100

    Apache Beam 初探

    Beam支持Java和Python,与其他语言绑定的机制在开发中。它旨在将多种语言、框架和SDK整合到一个统一的编程模型。...它的特点有: 统一的:对于批处理和流式处理,使用单一的编程模型; 可移植的:可以支持多种执行环境,包括Apache Apex、Apache Flink、Apache Spark和谷歌Cloud Dataflow...对于有限或无限的输入数据,Beam SDK都使用相同的类来表现,并且使用相同的转换操作进行处理。...如Apache Beam项目的主要推动者Tyler Akidau所说: “为了让Apache Beam能成功地完成移植,我们需要至少有一个在部署自建云或非谷歌云时,可以与谷歌Cloud Dataflow...对此,Data Artisan的Kostas Tzoumas在他的博客中说: “在谷歌将他们的Dataflow SDK和Runner捐献给Apache孵化器成为Apache Beam项目时,谷歌希望我们能帮忙完成

    2.5K10

    Python教程:IO

    文件使用完毕后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的:>>> f.close()由于文件读写时都有可能产生IOError,一旦出错,后面的f.close...当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象...如果连class的实例对象都无法序列化为JSON,这肯定不合理!...Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。json模块的dumps()和loads()函数是定义得非常好的接口的典范。...当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。

    1.1K00
    领券