机器之心报道 机器之心编辑部 来自康涅狄格大学等机构的研究者提出了一种基于结构剪枝的 BCNN 加速器,它能以较小的准确率损失获得 20 倍的剪枝率,并且在边缘设备上提供了超过 5000 帧 / 秒的推理吞吐量。 对于许多信号处理应用来说,能够从具有相位信息的复数数据中进行学习是必不可少的。当前实值深度神经网络(DNN)在潜在信息分析方面表现出了较高的效率,但在复数领域的应用还不够。而深度复数网络(Deep complex networks, DCN)可以从复数数据中学习,但计算成本较高,因此,这些技术都不
选自arXiv 作者:Mengran Gou等 机器之心编译 参与:路雪、黄小天、邱陆陆 近日,来自美国东北大学和美国信息科学研究所的研究者联合发布论文《MoNet: Moments Embedding Network》,提出 MoNet 网络,使用新型子矩阵平方根层,在双线性池化之前执行矩阵归一化,结合紧凑池化在不损害性能的前提下大幅降低维度,其性能优于 G^2DeNet。目前该论文已被 CVPR 2018 接收。 将图像的局部表示嵌入成既具有代表性、又不受轻微噪声影响的特征,是很多计算机视觉任务中的重
摘要:ViT(Vision Transformer)等视觉模型的强大性能,是来自于 Transformer,还是被忽略的 patch?有研究者提出了简单 ConvMixer 模型进行证明,直接将 patch 作为输入,实验表明,ConvMixer 性能优于 ResNet 等经典视觉模型,并且在类似的参数计数和数据集大小方面也优于 ViT、MLP-Mixer 及其一些变体。
Attention(注意力)机制如果浅层的理解,跟他的名字非常匹配。他的核心逻辑就是「从关注全部到关注重点」。
此次分享的文章主要关于二阶信息在图像分类中的应用。从Alexnet起,深度神经网络飞速发展,取得了一系列骄人的成绩。总体来说,深度分类网络主要分为两个部分:特征提取和分类器。无论是VGG还是GoogleNet,后来的Resnet、Densenet,仔细观察可以发现,无论设计了多么性能优异的网络,在连接分类器之前,一般都连接了一个Pooling层,如下表所示:
起因:《Sequence to Sequence Learning with Neural Networks》
目标检测和深度学习 Segmentation Alexander Kolesnikov, Christoph Lampert, Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation, ECCV, 2016. [http://pub.ist.ac.at/~akolesnikov/files/ECCV2016/main.pdf] [https://github.com/kolesman/SEC]
如何正确理解用户的诉求是交互过程的核心,近几年随着机器学习和深度学习的发展,语义匹配模型在学术界也有质的飞跃。今天我们将结合携程业务应用案例聊聊如何把这些模型落地在旅游场景中的,同时结合旅游场景做相应的模型改进。 问题匹配模型是机器人进行交互的基础模型,对匹配率的要求较高。传统的做法是直接根据关键词检索或 BM25等算法计算相关性排序,但这种方法的缺点是需要维护大量的同义词典库和匹配规则。后来发展出了潜在语义分析技术( Latent Semantic Analysis,LSA),该技术将词句映射到低维连续
| 导语 问答系统是信息检索的一种高级形式,能够更加准确地理解用户用自然语言提出的问题,并通过检索语料库、知识图谱或问答知识库返回简洁、准确的匹配答案。相较于搜索引擎,问答系统能更好地理解用户提问的真实意图, 进一步能更有效地满足用户的信息需求。问答系统是目前人工智能和自然语言处理领域中一个倍受关注并具有广泛发展前景的研究方向。 一、引言 问答系统处理的对象主要包括用户的问题以及答案。根据问题所属的知识领域,问答系统可分为面向限定域的问答系统、面向开放域的问答系统、以及面向常用问题集(Fre
图像识别 Image Recognition 专知荟萃 入门学习 进阶文章 Imagenet result 2013 2014 2015 2016 2017 综述 Tutorial 视频教程 Datasets 代码 领域专家 入门学习 如何识别图像边缘? 阮一峰 [http://www.ruanyifeng.com/blog/2016/07/edge-recognition.html] CS231n课程笔记翻译:图像分类笔记 [https://zhuanlan.zhihu.com/p/20894041]
少了数据,我们的机器学习和深度学习模型什么也干不了。这么说吧,那些创建了数据集、让我们可以训练模型的人,都是我们的英雄,虽然这些人常常并没有得到足够的感谢。让人庆幸的是,那批最有价值的数据集后来成了「学术基准线」——被研究人员广泛引用,尤其在算法变化的对比上;不少名字则成为圈内外都耳熟能详的名称,如 MNIST、CIFAR 10 以及 Imagenet 等。
如何正确理解用户的诉求是交互过程的核心,近几年随着机器学习和深度学习的发展,语义匹配模型在学术界也有质的飞跃。本文将结合携程业务应用案例聊聊如何把这些模型落地在旅游场景中,同时结合旅游场景做相应的模型改进。
【1】 Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth Mover's Distance 标题:非平衡扩散推土机距离知识图上的信号嵌入
【1】 Binarized P-Network: Deep Reinforcement Learning of Robot Control from Raw Images on FPGA 标题:二值化P-网络:基于FPGA的机器人原始图像控制的深度强化学习 链接:https://arxiv.org/abs/2109.04966
【1】 PVTv2: Improved Baselines with Pyramid Vision Transformer 标题:PVTv2:使用金字塔视觉Transformer改进基线
领取专属 10元无门槛券
手把手带您无忧上云