首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【完结】林轩田机器学习技法终章

    我们在本系列课程中介绍的第一个特征提取的方法就是kernel。Kernel运算将特征转换和计算内积这两个步骤合二为一,提高了计算效率。我们介绍过的kernel有:Polynormial Kernel、Gaussian Kernel、Stump Kernel等。另外,我们可以将不同的kernels相加(transform union)或者相乘(transform combination),得到不同的kernels的结合形式,让模型更加复杂。值得一提的是,要成为kernel,必须满足Mercer Condition。不同的kernel可以搭配不同的kernel模型,比如:SVM、SVR和probabilistic SVM等,还包括一些不太常用的模型:kernel ridge regression、kernel logistic regression。使用这些kernel模型就可以将线性模型扩展到非线性模型,kernel就是实现一种特征转换,从而能够处理非常复杂的非线性模型。顺便提一下,因为PCA、k-Means等算法都包含了内积运算,所以它们都对应有相应的kernel版本。

    02
    领券