model),这是我得到的输出 glm(formula = am ~ disp + hp, family = binomial, data = mtcars) Deviance0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 43.230 on 31 degrees of freedom
Residual deviance</
我有一个问题与estimator.loss_方法的雪橇梯度提升分类器。随着时间的推移,我试图将测试错误与训练错误进行比较。以下是我的一些数据准备:train = np.array(shuffled_ds)
for i in range(train.shape[1]): print(i,list(train[1:5,i])) lbl.fit(list(tr