R基础字符串处理函数 nchar paste strsplit tolower toupper casefold chartr gsub sub substr substring grep grepl regexpr R包stringr 字符串处理学习思路 拼接 对应拼接,如 (‘a’,’b’)+(‘c’,’d’) → (‘ac’,’bd’) 多拼为一,如 (‘a’,’cd’,’m’) → (‘acdm’) 拆分(根据pattern) 如’a.b.c.d’ → (‘a’,’b’,’
Rmarkdown扩展了markdown的语法,所以markdown能写的,Rmarkdown能写,后者还提供了一些新的特性,特别是图表,很nice。
UMLChina整理的UML建模工具列表请见http://www.umlchina.com/tools/search.aspx
在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程。具体如下: 数据科学工作流程: 1.数据导入 2.数据整理 3.反复理解数据 数据可视化 数据转换 统计建模 4.作出推断(比如
作者:NSS 翻译:杨金鸿 术语校对:韩海畴 全文校对:林亦霖 本文约3000字,建议阅读7分钟。 本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题。学习者不知道从哪开始,如何进行,选择什么学习资源。虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼。 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言。这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解
在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程。具体如下: 数据科学工作流程 数据导入 数据整理 反复理解数据 数据可视化 数据转换 统计建模 作出推断(比如预测) 沟通交流 自动化分析 程序开发 下面列出每个步骤最有用的一些R包: 数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式。在R和python上都可使用 readr:实现表格数据的快速导入。中文介绍可参考这里 readxl:读取Microsoft Excel电子表
PivotalR:用于读取Pivitol(Greenplum)和HAWQ数据库中的数据
http://www.umlchina.com/Tools/search.aspx
本博客将简述中兴通讯股份有限公司在原理图设计中需要注意的一些事项,其中包含了中兴设计开发部积累的大量硬件开发知识和经验,可以作为学习使用。硬件工程师可以学习并掌握检查条目的内容以及对条目的详细说明,学习部门经验。
领取专属 10元无门槛券
手把手带您无忧上云