coco panoptic challenge 2020 leaderboard 作为唯一超过去年冠军的结果,Keypoint赛道里我们的成绩就很强吗?...另外一个有意思的事情是keypoint 榜上的结果是(1st,4th,7th)的成绩,意思是第二第三名并没有按照组委会要求提交报告,不知道成绩如何。 ?...---- 突破 在这里先介绍在keypoint这个问题上的两个改进,一个是关于codebase可靠性的,另外一个则是在监督方面让网络关注约束信息。...2020 COCO Keypoint Challenge Road Map 还记得HRNet横空出世时,我刚入coco keypoint的坑,那时觉得这指标太牛逼了,而且MSRA还是非常良心的,开源指标和论文一致...因为沿用top-down的方法(先检测人,然后对每个instance进行关键点定位),人体检测的效果对最后keypoint指标影响几乎是线性的,大概每提一个点的detection AP, keypoint
下面先上一个我们模型的视频结果: COCO2018 Keypoint算法结果展示 Background 人体关键点检测(Human Keypoint Detection)又称为人体姿态识别...人体关键点检测任务对于现实生活有着很大的潜在用途,目前公开的比赛中最权威的是 MS COCO Keypoint track 的比赛,也是该领域最有挑战的比赛,参赛队不乏 Facebook,Google...旷视科技 Detection 组在 2017,2018 年两次夺得该比赛的冠军,2017 年旷视 COCO Keypoint 比赛冠军工作 CPN 在业界具有深远影响,并获得广泛使用。...这里,我们将介绍旷视 2018 年 COCO Keypoint 比赛夺冠的工作。...、人体动作识别,并在上述方向有着长期深入的研究;2017、2018 年作为负责人带队参加 COCO 人体姿态识别竞赛(Human Keypoint Detection),连续两次夺魁。
Introduction OpenPose is a library for real-time multi-person keypoint detection and multi-threading...Library main functionality: Multi-person 15 or 18-keypoint body pose estimation and rendering....Multi-person 2x21-keypoint hand estimation and rendering (coming soon in around 1-2 months!)....Multi-person 70-keypoint face estimation and rendering (coming soon in around 2-3 months!)....Tomas Simon and Hanbyul Joo and Iain Matthews and Yaser Sheikh}, booktitle = {CVPR}, title = {Hand Keypoint
anchor-free目标检测算法分为两种,一种是DenseBox为代表的Dense Prediction类型,密集地预测的框的相对位置,另一种则是以CornerNet为代表的Keypoint-bsaed...本文主要列举几种Keypoint-based Detection类型的网络,主要涉及以下网络: CornerNet ExtremeNet CenterNet CenterNet(Object as Point...CenterNet [cf4ef5b0594cbd00a56b5cb52ba06477.png] CornerNet将目前常用的anchor-based目标检测转换为keypoint-based目标检测...CornerNet-Lite CornerNet作为Keypoint-based目标检测算法中的经典方法,虽然有着不错的准确率,但其推理很慢,大约需要1.1s/张。
第一期是我们 2018 年COCO Keypoint 冠军算法的首次解读。下面先上一个我们模型的视频结果。...视频内容 背 景 人体关键点检测(Human Keypoint Detection)又称为人体姿态识别,旨在准确定位图像之中人体关节点的位置,是人体动作识别、人体行为分析、人机交互的前置任务。...旷视研究院 Detection 组在 2017,2018 年两次夺得该比赛的冠军,2017 年旷视 COCO Keypoint 比赛冠军工作 CPN 在业界具有深远影响,并获得广泛使用。...这里,我们将介绍旷视 2018 年 COCO Keypoint 比赛夺冠的工作。...、人体动作识别,并在上述方向有着长期深入的研究;2017、2018 年作为负责人带队参加 COCO 人体姿态识别竞赛(Human Keypoint Detection),连续两次夺魁。
anchor-free目标检测算法分为两种,一种是DenseBox为代表的Dense Prediction类型,密集地预测的框的相对位置,另一种则是以CornerNet为代表的Keypoint-bsaed...本文主要列举几种Keypoint-based Detection类型的网络,主要涉及以下网络: CornerNet ExtremeNet CenterNet CenterNet(Object as...CornerNet将目前常用的anchor-based目标检测转换为keypoint-based目标检测,使用角点对表示每个目标,CornerNet主要关注目标的边界信息,缺乏对目标内部信息的获取,很容易造成误检...CornerNet-Lite论文地址:https://arxiv.org/abs/1904.08900论文代码:https://github.com/princeton-vl/CornerNet-LiteCornerNet作为Keypoint-based
论文: CornerNet: Detecting Objects as Paired Keypoints
descriptor. len = 6 * keypoint(3); % Rotate the keypoints by 'ori' = keypoint(4) s = sin(keypoint(4...)); c = cos(keypoint(4)); % Apply transform r1 = keypoint(1) - len * (c * y1 + s * x1); c1 = keypoint...(2) + len * (- s * y1 + c * x1); r2 = keypoint(1) - len * (c * y2 + s * x2); c2 = keypoint(2) + len *...keys1, Image im2, Keypoint keys2); Keypoint CheckForMatch(Keypoint key, Keypoint klist); int DistSquared...Otherwise, return NULL. */ Keypoint CheckForMatch(Keypoint key, Keypoint klist) { int dsq, distsq1
; //narf_keypoint_detector为点云对象 narf_keypoint_detector.setRangeImageBorderExtractor...().support_size = support_size; //获得特征提取的大小 pcl::PointCloud keypoint_indices; narf_keypoint_detector.compute...(keypoint_indices); std::cout keypoint_indices.points.size ()<<" key points....; keypoint_indices2.resize (keypoint_indices.points.size ()); for (unsigned int i=0; ikeypoint_indices.size...(); ++i) // This step is necessary to get the right vector type keypoint_indices2[i]=keypoint_indices.points
PCL中keypoints模块及类的介绍 (1)class pcl::Keypoint 类keypoint是所有关键点检测相关类的基类,定义基本接口,具体实现由子类来完成...; // narf_keypoint_detector.setRangeImage (&range_image); narf_keypoint_detector.getParameters ()...(keypoint_indices); std::cout keypoint_indices.points.size ()<<" key points....; keypoint_indices2.resize (keypoint_indices.points.size ()); for (unsigned int i=0; ikeypoint_indices.size...(); ++i) // This step is necessary to get the right vector type keypoint_indices2[i]=keypoint_indices.points
SurfFeatureDetector surfDetector(4000); //hessianThreshold,海塞矩阵阈值,并不是限定特征点的个数 vectorKeyPoint...> keyPoint1,keyPoint2; surfDetector.detect(image1,keyPoint1); surfDetector.detect(image2...,keyPoint2); //绘制特征点 drawKeypoints(image1,keyPoint1,image1,Scalar::all(-1),DrawMatchesFlags...,imageDesc1); SurfDescriptor.compute(image2,keyPoint2,imageDesc2); //特征点匹配并显示匹配结果...,image02,keyPoint2,goodMatchePoints,imageOutput,Scalar::all(-1), Scalar::all(-1),vector<char
网络设计: ... -> RoI ----\ -> RoIFeatureXform -> keypoint head -> keypoint output -> loss...... -> Feature / Map keypoint head 产生 RoI 的特征表示,用于预测 keypoint. keypoint 输出模块将特征表示转化为 keypoint...(model, blob_in, dim): """ 添加 Mask R-CNN keypoint 输出: keypoint heatmaps. """ # NxKxHxW...(假设极端情况时,只有一个可见keypoint 和 N 个可见 keypoints: N 个 keypoints时,每个对于梯度计算的作用是 1/N; 而 1 个 keypoint...(意味着,一个可见 keypoint 与 N 个 keypoints 中的每个 keypoint 的作用效果相同.) """ model.StopGradient('keypoint_loss_normalizer
for i = 1: size(locs,1) % Draw an arrow, each line transformed according to keypoint parameters....parameters. % % Parameters: % Arrays: % imsize = [rows columns] of image % keypoint = [subpixel_row...descriptor. % 长度放大6倍 len = 6* keypoint(3); % Rotate the keypoints by 'ori' = keypoint(4) s = sin(keypoint...(4)); c = cos(keypoint(4)); % Apply transform %画一条线需要起点和终点,两个点所以搞出四个坐标 r1 = keypoint(1) - len * (c...* y1 + s * x1); c1 = keypoint(2) + len * (- s * y1 + c * x1); r2 = keypoint(1) - len * (c * y2 + s *
code from mmpose def keypoint_pck_accuracy(pred, gt, mask, thr, normalize): """Calculate the pose...gt (np.ndarray[N, K, 2]): Groundtruth keypoint location....Returns: tuple: A tuple containing keypoint accuracy....- acc (np.ndarray[K]): Accuracy of each keypoint....targets (np.ndarray[N, K, D]): Groundtruth keypoint location.
//提取特征点 SurfFeatureDetector Detector(2000); vectorKeyPoint> keyPoint1, keyPoint2; Detector.detect...(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征点描述,为下边的特征点匹配做准备 SurfDescriptorExtractor...(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector > matchePoints;...> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); /...> keyPoint1, keyPoint2; surfDetector.detect(image1, keyPoint1); surfDetector.detect(image2, keyPoint2
--write_keypoint path/: 在指定路径输出包含人体姿态数据的 JSON, XML 或 YML 文件....(hand_scale_number, 1, “Analogous to scale_number but applied to the hand keypoint detector...., “”, “(Deprecated, use write_json) Directory to write the people pose keypoint data....Set format with write_keypoint_format.”); **[已废弃] ** DEFINE_string(write_keypoint_format, “yml”, “(Deprecated..., use write_json) File extension and format for write_keypoint: json, xml, yaml & yml.
我们先来看一下子函数声明: void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vectorKeyPoint..._2d2d ( const std::vectorKeyPoint>& keypoints_1, const std::vectorKeyPoint>& keypoints_2,...const std::vector& matches, Mat& R, Mat& t ); void triangulation ( const vectorKeyPoint...>& keypoint_1, const vectorKeyPoint>& keypoint_2, const std::vector& matches,...void triangulation ( const vectorKeyPoint >& keypoint_1, const vectorKeyPoint >& keypoint
keypoint的检测。...keypoint,这4个点在3D bbox regression起到一定的作用,我们在下一部分再介绍。...在keypoint检测任务中,利用Roi Align得到的14*14特征图,经过卷积和反卷积最后得到6 * 28 * 28的特征图,注意到只有keypoint的u坐标会提供2D Box以外的信息,因此,...上的keypoint的概率。...这里也体现了keypoint的用处: ? 上述公式即为约束方程,因此可以通过高斯牛顿的方法直接求解。
opencv4.0.0 自带的 samples GPU surf_keypoint_matcher.cpp surf_keypoint_matcher.cpp #include <iostream...features detector, descriptor extractor and BruteForceMatcher_CUDA" << endl; cout keypoint_matcher...matcher->match(descriptors1GPU, descriptors2GPU, matches); // downloading results vectorKeyPoint...zhangjun/SoftWare/opencv-4.0.0/build") find_package( OpenCV REQUIRED ) add_executable( SURF_test surf_keypoint_matcher.cpp