optimizer = optim.SGD(model.parameters(),lr = 0.01, momentum = 0.9)optimizer = optim.Adam([var1,var2]
. # 有两个`param_group`即,len(optim.param_groups)==2 optim.SGD([ {'params': model.base.parameters...{'params': model.classifier.parameters(), 'lr': 1e-3} ], lr=1e-2, momentum=0.9) #一个参数组 optim.SGD
= Net() net_RAdam = Net() nets = [net_SGD, net_Momentum, net_Adam, net_RAdam] opt_SGD = optim.SGD...(net_SGD.parameters(), lr=LR) opt_Momentum = optim.SGD(net_Momentum.parameters(), lr=LR, momentum
torch.optim.Adam(参数,学习率) 注意: 参数可以使用model.parameters()来获取,获取模型中所有requires_grad=True的参数 optimizer = optim.SGD...nn.CrossEntropyLoss(),常用于分类问题 model = Lr() # 实例化模型 criterion = nn.MSELoss() # 实例化损失函数 optimizer = optim.SGD...self.linear(x) return out # 实例化模型,loss,和优化器 model = Lr() criterion = nn.MSELoss() optimizer = optim.SGD...cpu") x,y = x.to(device),y.to(device) model = Lr().to(device) criterion = nn.MSELoss() optimizer = optim.SGD
创建模型model = nn.Linear(10, 10).cuda()model = DDP(model)# 定义损失函数和优化器criterion = nn.MSELoss()optimizer = optim.SGD...self.layer2(x.cuda(1)) return xmodel = ModelParallel()# 定义损失函数和优化器criterion = nn.MSELoss()optimizer = optim.SGD...进行混合精度训练from torch.cuda.amp import autocast, GradScaler# 定义模型model = nn.Linear(10, 10).cuda()optimizer = optim.SGD
6.0]]) # 实例化模型、损失函数和优化器 model = LinearRegression() criterion = nn.MSELoss() # 均方误差损失函数 optimizer = optim.SGD...model = LinearRegression() criterion = nn.MSELoss() # 均方误差损失函数 optimizer = optim.SGD(model.parameters
return x def run(): torch.manual_seed(1024) model = Model() model.train() optimizer = optim.SGD...return x def run(): torch.manual_seed(1024) model = Model() model.train() optimizer = optim.SGD
PyTorch提供了多种优化器,例如: optim.SGD:随机梯度下降优化器。 optim.Adam:Adam优化器。...return x # 创建模型实例 model = SimpleNN() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD
#导入torch.potim模块 criterion = nn.CrossEntropyLoss() #同样是用到了神经网络工具箱 nn 中的交叉熵损失函数 optimizer = optim.SGD
通常我们有optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)scheduler = lr_scheduler.StepLR
cuda:0'当中的0为想要使用显卡的编号 # 这里的0表示使用的是第一张显卡 net = MLP().to(device) # 使用.to函数将神经网络模块搬到MLP上进行运算 optimizer = optim.SGD
torch.optim as optim import torch.nn as nn lr = 1e-3 # learning_rate # 优化器优化的目标是三个全连接层的变量 optimizer = optim.SGD...x@w2.t() + b2 x = F.relu(x) x = x@w3.t() + b3 x = F.relu(x) return x optimizer = optim.SGD
100, input_dim) y_client2 = torch.randn(100, output_dim) # 本地训练(简化示例,实际中可能更复杂) optimizer_client1 = optim.SGD...(model_client1.parameters(), lr=0.01) optimizer_client2 = optim.SGD(model_client2.parameters(), lr=0.01
使用实例化模型、定义损失函数和优化器: model = NonLinearRegression() criterion = nn.MSELoss() # 使用均方误差损失函数 optimizer = optim.SGD...# 实例化模型、定义损失函数和优化器 model = NonLinearRegression() criterion = nn.MSELoss() # 使用均方误差损失函数 optimizer = optim.SGD
训练过程首先要建立一个优化器,引入相关工具包 import torch.optim as optim import torch.nn as nn learning_rate = 1e-3 optimizer = optim.SGD...x@w2.t() + b2 x = F.relu(x) x = x@w3.t() + b3 x = F.relu(x) return x optimizer = optim.SGD
首先构建优化器对象: optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) optimizer = optim.Adam([var1
定义优化算法 pytorch在torch.optim模块中提供了很多优化算法 #本节使用小批量随机梯度下降算法(SGD) import torch.optim as optim optimizer = optim.SGD...lr,设置学习率为0.03;net.parameters()导入模型的参数 print(optimizer) #输出优化算法的各项参数 扩展内容: #为不同网络设置不同学习率 optimizer = optim.SGD...net.linear.bias,val=0) #初始化偏差为0 #定义损失函数(均方差损失函数) loss = nn.MSELoss() #定义优化算法(同样的小批量随机梯度下降算法) optimizer = optim.SGD
forward(self, x): return self.fc(x) model = SimpleModel() criterion = nn.MSELoss() optimizer = optim.SGD...TransformerModel() for param in teacher_model.parameters(): param.requires_grad = False optimizer = optim.SGD...forward(self, x): return self.fc(x) model = SimpleModel() criterion = nn.MSELoss() optimizer = optim.SGD...TransformerModel() for param in teacher_model.parameters(): param.requires_grad = False optimizer = optim.SGD
criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD...Observe that only parameters of final layer are being optimized as# opoosed to before.optimizer_conv = optim.SGD...criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD
torch.device('cuda' if torch.cuda.is_available() else 'cpu')model = SimpleCNN().to(device)optimizer = optim.SGD...torch.device('cuda' if torch.cuda.is_available() else 'cpu')model = SimpleCNN().to(device)optimizer = optim.SGD...ptac# 启用自适应学习率优化ptac.enable_adaptive_lr()# 定义模型、优化器和损失函数model = nn.Linear(1000, 10).cuda()optimizer = optim.SGD...ptac# 启用模型量化ptac.enable_model_quantization()# 定义模型和优化器model = nn.Linear(1000, 10).cuda()optimizer = optim.SGD...')# 定义模型和分布式数据并行model = nn.Linear(1000, 10).cuda()model = DistributedDataParallel(model)optimizer = optim.SGD