首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Python指定提取连续6位数据的单号(上篇)

一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python数据提取的问题,一起来看看吧。...大佬们请问下 指定提取连续6位数据的单号(该含文字、数字、大小写字母等等),连续数字超过6位、小于6位的数据不要,这个为啥有的数据可以提取 有的就提取不出来?...下图是提取成功的: 下图是提取失败的: 二、实现过程 这里【猫药师Kelly】给了一个思路,使用C老师帮忙助力: 不过误报数据有点高 提取连续6位数据的单号(该含文字、数字、大小写字母、符号等等...这篇文章主要盘点了一个Python正则表达式数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

19430

使用Python指定提取连续6位数据的单号(中篇)

一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python数据提取的问题,一起来看看吧。...大佬们请问下 指定提取连续6位数据的单号(该含文字、数字、大小写字母等等),连续数字超过6位、小于6位的数据不要,这个为啥有的数据可以提取 有的就提取不出来?...二、实现过程 这里【猫药师Kelly】给了一个思路,使用C老师帮忙助力,每次只提取一种模式,然后update合并。 相当于把每行所有可能列出来,之后再合并。...=\D|$)' df['提取单号'] = df['理由'].map(lambda x: re.findall(pattern, x)[0] if len(re.findall(pattern, x))...这篇文章主要盘点了一个Python正则表达式数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

15820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 哈希(hash) 散

    标准库里的所有映射类型都是利用 dict 来实现的,因此它们有个共同的限制,即只有可散的数据类型才能用作这些映射里的键,本文记录Python 中 hash 相关内容。...Python 中可散的数据类型 官方定义 翻译过来就是: 如果一个对象的哈希值在其生命周期中从不变化(它需要一个 __hash__()方法) ,并且可以与其他对象进行比较(它需要一个 _ eq _ (...如果要把一个对象放入散列表,那么首先要计算这个元素键的散值。 Python 中可以用 hash() 方法来做这件事情: 内置的 hash() 方法可以用于所有的内置类型对象。...为了获取 my_dict[search_key] 背后的值,Python 首先会调用 hash(search_key) 来计算 search_key 的散值,把这个值最低 的几位数字当作偏移量,在散列表里查找表元...参考资料 流畅的Python(2017年人民邮电出版社出版) https://docs.python.org/3/glossary.html#term-hashable https://baike.baidu.com

    2.3K20

    Excel如何“提取”一中红色单元格的数据?

    Excel技巧:Excel如何“提取”一中红色单元格的数据? ? 场景:财务、HR、采购、商务、后勤部需要数据整理的办公人士。 问题:Excel如何“提取”一中红色单元格的数据?...具体操作方法如下:第一步:进行颜色排序 将鼠标放置在数据区的任意单元格,单击“排序”按钮(下图1处),对下列表中“型号”进行“单元格颜色”按红色进行排序。(下图3处) ?...第二步:复制红色单元格数据 将红色单元格的数据复制到D。黏贴时可以选择“选择性黏贴—值”。效果如下: ? 是不是很快搞定了客户朋友的问题。但这样有个问题,破坏了数据原有的顺序。这时候怎么办呢?...补救步骤:增加辅助 排序前,新增一“序号”。 ? 按颜色排序,复制出数据后,序号的顺序被打乱。 ? 第三步:按序号在升序排序。...总结:辅助是Excel中常见的解决问题的方法和思路。而序号是强烈推荐大家工作添加的玩意。标识数据表的唯一性。当然这个案例有个问题,就是如果数据是更新的。

    5.8K20

    Python进行特征提取

    #给出被选出的特征的数量 selector.support_ #给出了被选择特征的mask selector.ranking_ #特征排名,被选出特征的排名为1 #注意:特征提取对于预测性能的提升没有必然的联系...cross_validation from sklearn.datasets import load_iris #加载数据 iris=load_iris() X=iris.data y=iris.target #特征提取...selector.threshold_ selector.get_support(indices=True) #scikitlearn提供了Pipeline来讲多个学习器组成流水线,通常流水线的形式为:将数据标准化, #--》特征提取的学习器...————》执行预测的学习器,除了最后一个学习器之后, #前面的所有学习器必须提供transform方法,该方法用于数据转化(如归一化、正则化、 #以及特征提取 #学习器流水线(pipeline) from

    72420
    领券