首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python中的K-medoids (Pyclustering)

K-medoids是一种聚类算法,用于将相似的数据点分组成簇。它是K-means算法的一种变体,不同之处在于K-medoids选择每个簇的代表点时,是从数据集中选择实际存在的点作为中心,而不是简单地计算簇的均值。

K-medoids算法的主要步骤如下:

  1. 初始化:随机选择K个数据点作为初始的簇中心。
  2. 分配:将每个数据点分配给距离其最近的簇中心。
  3. 更新:对于每个簇,计算所有数据点到其中心的总距离,并选择具有最小总距离的数据点作为新的簇中心。
  4. 重复步骤2和步骤3,直到簇中心不再改变或达到预定的迭代次数。

K-medoids算法的优势在于它能够处理噪声和离群点,并且对于非凸形状的簇也能够较好地进行聚类。它适用于各种领域的数据分析和模式识别任务。

对于使用Python的开发工程师来说,可以使用Pyclustering库来实现K-medoids算法。Pyclustering是一个开源的聚类分析和数据挖掘库,提供了多种聚类算法的实现,包括K-medoids。

以下是Pyclustering库中实现K-medoids的相关链接和示例代码:

  1. Pyclustering官方网站:https://pyclustering.github.io/
  2. K-medoids在Pyclustering中的文档:https://pyclustering.github.io/docs/0.10.1/html/d7/d0d/classpyclustering_1_1cluster_1_1kmedoids_1_1kmedoids.html

以下是使用Pyclustering库实现K-medoids算法的示例代码:

代码语言:txt
复制
from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.cluster import cluster_visualizer
from pyclustering.utils import read_sample

# 加载数据样本
data = read_sample("data.csv")

# 创建K-medoids算法实例,其中K为簇的个数
kmedoids_instance = kmedoids(data, [3, 10, 15])

# 运行K-medoids算法
kmedoids_instance.process()

# 获取结果簇及其对应的中心点
clusters = kmedoids_instance.get_clusters()
medoids = kmedoids_instance.get_medoids()

# 可视化聚类结果
visualizer = cluster_visualizer()
visualizer.append_clusters(clusters, data)
visualizer.show()

上述示例代码中,首先从"data.csv"文件中加载数据样本,然后创建K-medoids算法实例,并设置簇的个数为3,10和15。接下来运行算法,获取结果簇及其对应的中心点。最后,使用可视化工具展示聚类结果。

希望这些信息对你有所帮助!

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Python3 机器学习简明教程

    1 机器学习介绍     1.1 什么是机器学习     1.2 机器学习的应用     1.3 机器学习基本流程与工作环节         1.3.1 数据采集与标记         1.3.2 数据清洗         1.3.3 特征选择         1.3.4 模型选择         1.3.5 训练和测试         1.3.6 模型使用     1.4 机器学习算法一览 2 Python 3 机器学习软件包     2.1 多种机器学习编程语言比较     2.2 开发环境 Anaconda 搭建         2.2.1 Windows         2.2.2 macOS         2.2.3 Linux     2.3 Jupyter Notebook 介绍     2.4 Spyder 介绍     2.5 Numpy 介绍         2.5.1 Numpy 数组         2.5.2 Numpy 运算         2.5.3 Numpy Cheat Sheet     2.6 Pandas 介绍         2.6.1 十分钟入门 pandas         2.6.2 Pandas Cheat Sheet     2.7 Matplotilb 介绍         2.7.1 Pyplot 教程         2.7.2 plots 示例         2.7.3 Matplotilb Cheat Sheet     2.8 scikit-learn 介绍         2.8.1 scikit-learn 教程         2.8.2 scikit-learn 接口         2.8.3 scikit-learn Cheat Sheet     2.9 数据预处理         2.9.1 导入数据集         2.9.2 缺失数据         2.9.3 分类数据         2.9.4 数据划分         2.9.5 特征缩放         2.9.6 数据预处理模板 3 回归     3.1 简单线性回归         3.1.1 算法原理         3.1.2 预测函数         3.1.3 成本函数         3.1.4 回归模板     3.2 多元线性回归     3.3 多项式回归         3.3.1 案例:预测员工薪水     3.4 正则化         3.4.1 岭回归         3.4.2 Lasso 回归     3.5 评估回归模型的表现         3.5.1 R平方         3.5.2 广义R平方         3.5.3 回归模型性能评价及选择         3.5.4 回归模型系数的含义 4 分类     4.1 逻辑回归         4.1.1 算法原理         4.1.2 多元分类         4.1.3 分类代码模板         4.1.4 分类模板     4.2 k-近邻         4.2.1 算法原理         4.2.2 变种     4.3 支持向量机         4.3.1 算法原理         4.3.2 二分类线性可分         4.3.3 二分类线性不可分支持         4.3.4 多分类支持向量机         4.3.5 Kernel SVM - 原理         4.3.6 高维投射         4.3.7 核技巧         4.3.8 核函数的类型     4.4 决策树         4.4.1 算法原理         4.4.2 剪枝与控制过拟合         4.4.3 信息增益         4.4.4 最大熵与EM算法 5 聚类     5.1 扁平聚类         5.1.1 k 均值         5.1.2 k-medoids     5.2 层次聚类         5.2.1 Single-Linkage         5.2.2 Complete-Linkage 6 关联规则     6.1 关联规则学习     6.2 先验算法Apriori     6.3 FP Growth 7 降维     7.1 PCA(主成分分析)     7.2 核 PCA     7.3 等距特征映射IsoMap 8 强化学习     8.1 置信区间上界算法         8.1.1 多臂老虎机问题

    03
    领券