首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AIGC之VAE详解与代码实战

    那么VAE是怎么做的,通过我们前面那么多介绍,想必应该很清楚了,单独只有一个G网络,根本是无法实现生成任务的。GAN是在后面加的判别器能更好的求解损失。...那么能否在前面加一个什么网络,使我们的损失函数好做一些,能够求解呢,当然VAE便是如此,在前面加上一个解码网络,接下来我们看看VAE这个过程。...而如果想要有生成能力,VAE巧妙的使laten space满足正太分布,这样在正太分布上采样即完成了一个生成模型。...,在加上一个KL散度来约束编码器,而事实上VAE中的V(变分)就是因为VAE的推导就是因为用到了KL散度(进而也包含了变分法)。...此次采用miniset来作为训练数据,看VAE的实战效果。

    26910

    对 VAE 的理解与实现

    之前我们介绍过 ELBO 和 VAE,本文记录我自己的理解与实现。 问题描述 假设我们有来自某一未知分布 p 的随机变量观测样本集 X,如何从 X 获取 p?...贝叶斯评估器 的道路 ELBO 的神奇之处在于同时结合了生成器和评估器的分布描述方式,在多处受阻的境况中巧妙运用贝叶斯公式找到了一种可以参数化、可以优化、贪心最大化变量 (ELBO) 的方法 VAE...我理解 VAE 是对 ELBO 的直接实现 VAE 具象化了 ELBO 推导中的分布 p(z) = N(0,1) p(z|x)=N(z;\mu (x), diag(\sigma(x)^2...解码器)可以依赖 N(0,I) 上的采样生成近似 X 的样本,也就得到了近似 p 的生成器,以此近似描述 p 的分布 实现 以瑞士卷(Swiss Roll) 数据作为目标分布 p 在瑞士卷数据集上实现 VAE.../vae/ https://www.zywvvd.com/notes/study/probability/elbo/elbo/ https://github.com/zywvvd/SwissRoll-VAE-pytorch

    38630

    VAE 的前世今生:从最大似然估计到 EM 再到 VAE

    本文旨在为  VAE 和 EM 提供一种统一的视角,让具有机器学习应用经验但缺乏统计学背景的读者最快地理解 EM 和 VAE。...此时,ELBO 的梯度为: 其中, 是两个各向同性高斯分布之间的 KL 散度,其解析解为: VAE 算法的流程如下: 7 VAE 的前沿研究话题 (1)VAE 中的解耦 VAE 和普通的自编码器之间的最大差别在于隐变量具有先验...VAE 需要最小化 ,因此限制了 z 的空间。同时,VAE 也需要在模型中最大化训练数据 x 的对数似然。...VAE 的简单变体 β-VAE 为 KL 损失引入了一个大于 1 的放缩因子,从而提升解耦的重要性。...近期,许多工作(例如,VQ-VAE)将 VAE 与自回归模型结合,成功地提升了保真度。利用大规模文本-图像对预训练的 CogView 将 VQ-VAE 扩展到了图文生成领域。

    1.4K20

    利用VAE和LSTM生成时间序列

    在第二阶段,我们也检查由我们训练的VAE所产生的结果,以调查产生增广时间序列样本的可能性。...VAE的第二个有意义的输入是整数序列,该序列对作为分类特征的附加信息进行编码,如月、工作日、小时、假日、天气条件。...像在VAE架构中的每个编码器一样,,它会产生一个2D输出,用于逼近潜在分布的平均值和方差。解码器从二维潜在分布上采样,形成三维序列。...对VAE的训练是将两部分组合在一起的损失降至最低。...我们基于LSTM单元构建了一个VAE,该VAE将原始信号与外部分类信息相结合,发现它可以有效地估算缺失间隔。我们还尝试分析模型学习到的潜在空间,以探索产生新序列的可能性。

    1.9K40
    领券