首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

动态规划法(四)——0/1背包问题

问题描述

有n个物体,重量分别是w0~wn-1,每个物体放入背包后可获得的收益分别为p0~pn-1,背包载重为M,且所有物体要么放要么不放,不能只放一部分。求如何放物体可以得到最高的收益。

问题分析

设f(i,m)表示第i步背包的总收益,其中i表示当前进行到了第i步,m为当前背包载重,则当前第i步只有两种选择:

  1. 将第i个物体放入背包 此时背包总收益就变成f(i-1,m-wi)+wi。
  2. 第i个物体不放入背包 此时背包总收益就是f(i-1,m)。

第i步究竟怎么选择,知道就取决于这两种选择那个结果更大。因此要分别计算者两种情况的值,选较大者作为第i步的结果。 这就是一个典型x的递归。

代码实现

代码语言:javascript
复制
// 表示每一个物体是否放入背包
boolean[] isAdd = new boolean[n];
// 存储每个物体的重量
int[] weight = new int[n];
// 存储每个物体的收益
int[] p = new int[n];

/**
 * 0/1背包问题的递归函数
 * @param i : 当前是第几步
 * @param m : 当前背包载重
 * @return 最大收益
 */
int knap( int i, int m ){
    if ( i==-1 ) return 0;
    if ( weight[i]>m )
        return knap( i-1, m );

    int a = knap(i-1,m);
    int b = knap(i-1,m-weight[i])+p[i];
    if ( a>b )
        return a;
    else{
        isAdd[i] = true;
        return b;
    }
}
下一篇
举报
领券