首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow Lite 2019 年发展蓝图

TensorFlow Lite 2019 年发展分为四个关键部分:易用性、性能、优化和可移植性。

易用性

支持更多 op

  • 根据用户反馈优先处理更多 op

op 版本控制和签名

  • op 内核将获得版本号
  • op 内核将可以通过签名识别

新转换器

  • 实现新的 TensorFlow Lite 转换器,该转换器将能更好地处理图形转换(即控制流、条件语句等)并取代 TOCO

支持长短期记忆 (LSTM) / 循环神经网络 (RNN)

  • 增加对 LSTM 和 RNN 的完整转换支持

图形可视化工具

  • 提供增强版图形可视化工具

预处理和后处理支持

  • 针对推理的预处理和后处理提供更多支持

控制流和设备端训练

  • 增加对控制流相关 op 的支持
  • 增加对设备端训练的支持

新 API

  • 将新的 C API 作为语言绑定和大多数客户端的核心
  • iOS 版 Objective-C API
  • iOS 版 SWIFT API
  • 更新后的 Android 版 Java API
  • C# Unity 语言绑定

添加更多模型

  • 向网站的支持部分添加更多模型

性能

更多硬件委派

  • 增加对更多硬件委派的支持

支持 NN API

  • 持续支持并改进对 NN API 的支持

框架可扩展性

  • 通过自定义优化版本支持简便的 CPU 内核重写

GPU 委派

  • 继续扩展对 OpenGL 和 Metal op 的总支持 op
  • 开源

提升 TFLite CPU 的性能

  • 优化浮动和量化模型

优化

模型优化工具组

  • 训练后量化 + 混合内核
  • 训练后量化 + 定点内核
  • 训练时量化

为更多技术提供更多支持

  • RNN 支持
  • 稀疏性 / 精简
  • 支持较低位宽

可移植性

微控制器支持

  • 增加对一系列 8 位、16 位和 32 位微控制器 (MCU) 架构语音和图像分类用例的支持
下一篇
举报
领券