在“百度Create2018”百度开发者大会上,百度发布了升级版的开源深度学习框架PaddlePaddle,可谓深度学习模型设计的利器,让开发者只需关注模型的高层结构,而无需担心底层的搭建问题。同时,百度在2017年11月发布了以此框架为基础的,定制化训练和服务平台EasyDL,即使零机器学习算法基础,也能全程通过可视化操作获取定制化AI服务。
不同行业对人工智能的定制化需求是通用AI能力难以满足的行业AI定制化需求对训练和推理算力提出高要求满足不同行业对AI的定制化需求,其实存在诸多业务和技术上的挑战。首先,提出定制化AI需求的行业用户虽然是各自行业的领域专家但对于人工智能及深度学习的技术知之甚少,要求他们直接通过深度学习框架训练得到定制化模型是不切实际的。
真实业务场景数据并发和时延压测比对5分钟完成定制模型训练与推理零基础也能快速上手为降低行业用户的使用门槛,实现零机器学习基础,零代码获得定制化深度学习模型及接口服务,百度EasyDL提供了简单且完善的平台业务系统,用户只需上传数据、发起训练、验证效果、发布模型四个步骤,就能快速获得定制化接口服务。
极简业务流程使得EasyDL对普通用户可即用为了使得模型训练、部署和推理对用户透明,百度EasyDL团队打造了结合大数据Spark系统和AI分布式训练Kubernetes工具的AIWorkflow引擎,实现了从数据处理到推理上线的全自动流程。如此一来,就解决了业务人员不懂代码,程序员不懂业务的痛点难点,使得AI技术能够迅速被业务人员学习和掌握,从而专注于精进业务能力。
全自动AIWorkflow引擎图像识别准确率大幅提高人力成本显著降低在NVIDIATeslaP4加速器的强大算力助力下,百度EasyDL已经在多个行业落地应用。比如在制造业中,百度EasyDL平台也在帮越来越多的企业提升效率并节约人力。
领取专属 10元无门槛券
私享最新 技术干货