【1.3】电功率和能量 电路吸收或发出功率的判断 【1.4】 电路常见元件 ---- 【1.1】电路和电路模型 1.实际电路 ----> 由电工设备和电器期间按预期目的连接构成的电流的通路 共性:建立在同一电路的理论基础上。 2.电路模型 如上图所示:这是一个实际电路抽象成一个电路模型的过程! ---- 上述注意: 具有相同的主要电磁性能的实际电路部件,在一定条件下可用同一电路模型进行表示。 同一实际电路部件在不同的应用条件下,其电路模型可以有不同的形式。 ---> 带电粒子有规定的定向运动 电流强度 ----> 单位时间内通过导体横截面积的电荷量、 单位A(安培)、KA、mA、uA、1KA = 10^3A,1mA = 10负3次方A,1uA = 10负6次方 根据公式求出:P = -UI = -3 x 2 = 6w 问题:复杂电路或交变电路中,两点电压的实际方向往往不易判别,给实际点零一问题的分析计算带来困难。
独立源在电路中起到"激励"作用,在电路中产生电压、电流,而受控源只是反映电路中某处的电压或者电流对另一处的电压或电流的控制关系,在电路中不能作为"激励"。 U2 = -5i + U1 = -10V + 6V = 4V。 因为受控电流是 非关联方向 所以前面+负号,而电阻为 关联方向 为正号。 基尔霍夫定律与元件特性构成了电路分析的基础。 概述:集总参数电路:集总参数思想是电路理论的最基本也是最核心的思想 。 集总参数电路是由电路电气器件的尺寸和工作信号的波长来做标准划分的,要知道集总参数电路首先要了解实际电路的基本定义。实际电路有可分为分布参数电路和集总参数电路。 支路:电路当中每一个两端元件就叫做是支路 以及 电路中通过同一电流的分支。当然这两种定义是分别使用在不同的场合当中的。以第二种定理为准。
我们在电阻两边链接导线,此时这个电路就称之为时短路。 短路的特征: 整个电路中没有用电器,因此,一旦接通,电路中电流极其大。 & 电压源不能并联在一起,不然导线就会 over ①:电压源两端电压由电源本身来决定的,与外电路是无关的。与流经它的电流方向,大小无关。 ②:通过电压源的电流由电源及外电路共同决定。 电路符号:(总的方向都是一样的) ---- 理想电流源 作用:所在的支路稳定提供一个方向,大小 Is 的电流,电压任意值。 电路符号: ①:电流源的输出电流由电源本身决定,与外电路无关。它们两端电压方向、大小无关。 ②:电流源两端的电压由电源及外电路共同决定。 常用于分析带有晶体管和运算放大器的电路。 电路符号如下:(受控电压源) 电路符号如下:(受控电流源)
发送也就是24V,36V切换,24V低电平,36V是高电平;主机接收电路可以高端放大也可以低端放大,设备端只会消耗固定的电流,mbus网络趋于稳定,负载时稳定的,当设备端发送数据时,mbus网络中电流会有所变化 ,通过采样电阻,电压跟随器,差分放大,采样保持电路,获取ttl电平,短路过载保护也是通过低端采样电阻控制供电开关的。
发送电路: 如上图示 ,图 一 为带 扩流电路 的 MBUS 发送电路,图二为去掉扩流电路的MBUS发送电路 事实证明,当为 图一电路时 在大负载情况下 数据 发送接收,都不正确 当 有扩流电路时 由于扩流电路起作用 ,电阻 R208 即使在MBUS 大负载电流的情况下也不热 当去掉扩流电路 在MBUS 大负载电流的情况下,电阻 R208 很热。 现 采用 图二所示电路,下面以此电路为例说明 首先 明确一点MBUS总线的特点 是由MBUS主机、从机共同的协作得到的电路特点,比如总线供电是MBUS主机的功能,总线接线无正负极性,则是从机电路功劳 综上所述实际上MBUS主机发送电路就是一个可调稳压电源,电路,当发送是,调制此稳压电源输出一个高电压或输出一个低电压,当接收时,就保持电压不变,电流自然会因为从机的数据发送而变化。 的调制 可以输出 0-BO的电压范围,此电路设计为 11.7V的最大幅度,此幅度会随着负载的增大而降低,因为有电流取样电路串在电路中,此电压幅度也是 MBUS 有规定的为 12V,空号电压(0v)=传号电压跌落
本篇将主要针对电源的驱动电路进行讲解。 一、驱动电路概述 1、驱动电路的作用 驱动电路位于电源主电路和数字控制核心之间,其本质是将数字控制核心产生的PWM信号进行功率放大,以驱动功率开关器件的开断。 典型的浮动接地驱动电路为自举驱动电路,它通过电平位移电路连接驱动电路与器件接地参考控制信号。自举电容器 CBST、图腾柱双极驱动器和常规栅极电阻器都可作为电平位移电路。 此外,一些驱动芯片已内置自举电路,可直接将自举信号接入功率器件基准端。 驱动电路按照电路结构分为隔离型驱动和非隔离型驱动。隔离型驱动电路是指包含光耦、变压器、电容等具有电气隔离功能器件的驱动电路。 1)三极管驱动电路 三级管驱动电路是最基本的MOS管驱动电路,下面以N—MOS三极管驱动电路为例。 氮化镓晶体管与硅管相似,也是电压驱动,它的栅源极驱动电压范围为-5~6V。
RLC 电路根据元件的连接方式分为 串联 RLC 电路 和 并联 RLC 电路,在滤波器、振荡器、谐振电路等应用中发挥重要作用。 6. 基尔霍夫定律 6.1 基尔霍夫电流定律 (KCL) 定义:在任意节点,流入电流之和等于流出电流之和。 ) % 电容 (6,2) to[short] (6,0) % 连接到地 (6,0) node[ground]{} % 接地符号 (0,0) to[short] (6,0); % 闭合回路 \end{circuitikz} \end{document} 8.2 并联 RLC 电路 ) % 电容支路 (6,2) to[short] (6,0) % 电容接地 (0,0) to[short] (6,0)
MUX:数据选择器(multiplexer),也称为多路选择器:在多路数据传送过程中,能够根据需要将其中任意一路选出来的电路。
1.4 电流的单位 安培 1000ma=1A 1.5 电路与电池 电路就是电流导通的道路,电池是一种特殊的通过化学反应产生能量的装置,电池正极吸收电子,电池负极发送电子。 ,这直接影响了电路中的电流是否能够流通,从而影响电路中的电气设备是否能够正常工作。 开路 当电路中的开关处于断开状态,电路就处于开路状态。在这种状态下,电流无法流通,电路中的电气设备也无法工作。 闭路 当电路中的开u按处于闭合状态,电路就处于闭路状态。 电感器的主要作用是在电路中调节电流的变化率。它可以用来过滤电路中的高频噪声,电感器两端的电流不会突变,保护其他电子元件不受到电磁干扰的影响。 电感的基本单位是:H(亨),它和电容一样,也是一个很大的计量单位,另外还有毫亨mh、微亨uh、纳亨nh 电感的作用; 电感可以作为电路稳定器的一部分,通过抵抗电路中电流 的变化,保持电路的稳定性和可靠性
第二章 基本放大电路 2.1 放大电路的构成 2.1.1 放大的概念 一、特征:功率放大 二、本质:能量的控制和转换 三、必要条件:有源元件 四、前提:不失真(保真) 五:测试信号:正弦波 2.1.2 怎样构建基本放大电路 一、目标:小功率信号→大功率 二、条件:1、元件 2、电源 三、技术路线 1、三极管→放大状态 2、小信号→iB(UBE) 3、合理的输出(构建的思路去设计:不加Rb,发射结烧掉 放大电路 1、直接耦合共射放大电路 注:将VBB用VCC取代,输入输出回路共用一套电源,Rb1是为了让VCC不从uI端口走,以便在基极根据叠加定理产生交直流信号 2、阻容耦合 注:输入回路从VCC 交流通路 2.6.2 共射-共基放大电路 共集-共基放大电路 这不得干掉一个管子? 场效应管放大电路的三种接法 写成△UGS/Ugs 类似三极管做交流等效时有个rce。MOS管可以不画rds即认为恒流区的线是水平的 恒流区倾斜度很小,rds很大,所以等效时rds可忽略。
输入电压采样是通过MCU内部运放按比例缩小在送到ADC进行采样的,具体电路如图3.5.1所示。输出电压检测电路如图3.4.1所示。 所以R3和R6流过电流相等。 (VOUT-V-)/R3 = V-/R6; 由上面两个式子即可得到 VOUT = V+ * (R3 + R6)/R6; 而又有: V+ = I * R8; 所以有: I =V+ / R8 = VOUT * R6/(R3 + R6)/R8; 电流就这样转换出来了,调整好几个电阻的阻值,Vout 用单片机的ADC采样即可。 2、高端电流检测电路 这个电路要检测电流最终的目的就是要得到图上VOUT和V1、V2的关系。
Snubber电路:也称吸收电路(图中红色部分) 作用:通过吸收phase的尖峰,来保护下边MOS管。改善EMI。 图中的蓝色部分是反馈,RFB1 需要放置在负载最重点 图中的绿色部分是补偿电路,下次再讲。
Mutisim 是一款功能强大的电子电路仿真软件,可以用于模拟和分析各种电子电路,包括数字电路。 数电实验 Mutisim 仿真的优势在于可以在不实际搭建硬件电路的情况下,进行电路设计、调试和分析。 元器件库中包含了各种电子元件,如电阻、电容、电感、二极管、三极管、集成电路等。电路原理图编辑区是用户进行电路设计的主要区域,可以通过拖拽元器件、连接导线等方式搭建电路。 门电路是数字电路的基本元件之一,包括与门、或门、非门、与非门、或非门等。在 Mutisim 中,可以通过设置门电路的输入和输出端口,进行逻辑运算和电路仿真。 数电实验电路搭建与仿真 数电实验电路搭建的步骤包括确定实验目的、选择电路元件、绘制电路原理图、连接电路元件、设置虚拟仪器等。 在绘制电路原理图时,需要注意元器件的连接方式和引脚编号,确保电路的正确性。同时,还需要注意电路的布局和美观,方便阅读和分析。 连接电路元件时,可以通过拖拽导线的方式进行。
硬盘作为硬件的物理结构很容易被大家理解,但要让数据可以被准确读出,写入,还要有足够的速度和稳定性满足人们的需求,这就需要电路来控制。 在硬盘的背面安装着一块电路板,用来实现硬盘电路的控制和信息的传输。 硬盘控制电路被刻在电路板上,每个型号的硬盘都有对应的专属硬盘电路板。电路板负责控制电源,确保硬盘运行并有足够的能量来保存数据。电路板也告诉硬盘如何移动主轴和使用什么盘片。 电路板可以控制硬盘电源。 下图是完整详细的硬盘电路示意框图,它们都被高度集成在电路板上。 image.png 硬盘电路由14个部分组成: Buffer Memory:缓冲区存储器。 在磁头从停泊区移走后,硬盘电路使用伺服标记跟踪旋转稳定性。 Read/Write Head:读/写磁头。 硬盘读/写信道由前置放大器/转接器(位于盘腔内)、读电路、写电路和同步时钟等组成。 硬盘电路板.jpg 所有的电路都被高度集成在电路板上,传统电路板采用印刷蚀刻阻剂的方法来制作,所以叫印刷电路板或印刷线路板。
门级电路 学过数字电路,我们都知道与、或、非三个门。虽然从实际上真实电路的角度来说,与非门、或非路一般比起与、或门更为简单,但一般情况下我们可能更喜欢从与、或、非说起。 将以上的门级电路连在一起,得到组合电路。 如果有向图没有环,则该组合电路没有反馈。 那么有没有有反馈的电路呢?举一个例子如下: ? 组合电路的描述 以上的电路图当然描述了电路,只是,处于仿真的需要,我们需要更为精确而简洁的信息。 我们可以把上述电路图中的顶点提出来,称为wire。 ? 表示wire的变量显然承载了整个电路的所有信息,并且随时可以通过门电路函数让任意两个wire变量产生联系。我们可以通过序偶来实现这一切。
电路仿真,顾名思义就是设计好的电路图通过仿真软件进行实时模拟,模拟出实际功能,然后通过其分析改进,从而实现电路的优化设计。是EDA(电子设计自动化)的一部分。 这是其免费SPICE 电路仿真软件LTspice/SwitcherCADIII所做的一次重大更新。这也是LTspice电路图仿真软件在欧洲,美国和澳大利亚,中国广为流传的根本原因。 它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 ? 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。 五、ElectronicWorkbench ElectronicWorkbench是一款电子电路仿真软件,可以进行各种电路工作演示,模拟各种电子电路,缩放显示的波形。 它可以进行各种电路工作演示,可模拟各种电子电路,可以缩放显示的波形,可仿真数字电路、模拟(线性)电路及数字电路与模拟(线性)混合电路的工作点,如:波形、频率、周期、有效值等。
6.3 仿真建模 1.测量R、L、C元件上电压与电流的相位关系 image.png 图6-4 测量R、L、C元件上电压与电流的相位关系的实验电路 (1)搭建基础电路结构如上图所示,学生实验只需在 (3)双踪示波器测量串联电路中总电压U与总电流I的相位差φ。将测量数据记入表6-4 “示波器测量”一栏。 (4)根据上述电路测量的各电压有效值数据,计算总电压U和总电流I的相位差φ,填入表6-4;画出两种频率下相量关系图,并分析其电路性质。 表6-4 测定RLC串联电路 f 示波器测量 U UR UL UC 计算U 计算φ 正弦波周期A 两波形差B 测量φ 8kHz 理论值 2V 山东大学电路分析实验6工程文件正弦稳态电路的研究-其它文档类资源-CSDN下载山东大学电路分析实验6工程文件正弦稳态电路的研究详解博客地址:https://blog.csd更多下载资源、学习资料请访问CSDN
数字电路有两种,流控和压控 晶体管作为开关时,就是用了它的“截止”和“饱和”两个状态。 CPU中的逻辑开关电路,原理上不是电流来控制的,而是(不准确的说是)电压来控制的,准确的说叫电场来控制的,只要电场在,零电流也能保持打开或关闭,这种晶体管开关叫MOSFET(金属氧化物半导体场效晶体管Metal-Oxide-Semiconductor 电流控制的三极管不普遍用于逻辑电路,用于模拟电路比较多,cpu这样用的话极控制电流就得把自己给烧了 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
电路图 说明 10uF = 106 22uF = 226 100nF = 104 AMS1117管脚图 注意 AMS1117最大输入电压为15V 发布者:全栈程序员栈长,转载请注明出处:https
在实际的便携式产品电路设计中,由于要求电池充电过程中,产品也要能够正常适用。所以设计中采用以下电路方式实现才是正确的方式: ? 但对某些电池切换电路,即使选择肖特基二极管也不能满足设计要求。对于一个高效电压转换器来说,节省下来的那部分能量可能会被二极管的正向压降完全浪费掉。 : 输入电压 输出电压 2.8V 2.65V 3.4v 3.0V 4.0V 3.3V 可以看出,即使是锂电池消耗了90%的电量的时候, LDO的输出端依然可以稳定输出3.3V.从图一 A210的供电电路分析 这样只要模块烧录可以在2.4V左右工作的程序,硅二极管也可以在此电路中使用了. 不过, 从电路性能上来考虑, 使用锗二极管或者肖特基二极管是最好的选择. 具体采用什么电路设计,还需要根据自己的产品其他电路工作电压范围和特性, 成本等几方面考虑了.