前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >动态规划算法秘籍

动态规划算法秘籍

作者头像
rainchxy
发布2018-09-13 16:11:16
1K0
发布2018-09-13 16:11:16
举报
文章被收录于专栏:趣学算法

本文来自通俗易懂算法入门书《趣学算法》。

动态规划是1957年理查德·贝尔曼在《Dynamic Programming》一书中提出来的,八卦一下,这个人可能有同学不知道,但他的一个算法你可能听说过,他和莱斯特·福特一起提出了求解最短路径的Bellman-Ford 算法,该算法解决了Dijkstra算法不能处理负权值边的问题。

Dynamic Programming,这里的Programming不是编程的意思,而是指一种表格处理法。我们把每一步得到的子问题结果存储在表格里,每次遇到该子问题时不需要再求解一遍,只需要查询表格即可。

4.1.1 算法思想

动态规划也是一种分治思想,但与分治算法不同的是,分治算法是把原问题分解为若干子问题,自顶向下,求解各子问题,合并子问题的解从而得到原问题的解。动态规划也是把原问题分解为若干子问题,然后自底向上,先求解最小的子问题,把结果存储在表格中,在求解大的子问题时,直接从表格中查询小的子问题的解,避免重复计算,从而提高算法效率。

4.1.2 算法要素

什么问题可以使用动态规划呢?我们首先要分析问题是否具有以下两个性质:

(1) 最优子结构

最优子结构性质是指问题的最优解包含其子问题的最优解。最优子结构是使用动态规划的最基本条件,如果不具有最优子结构性质就不可以使用动态规划解决。

(2) 子问题重叠

子问题重叠是指在求解子问题的过程中,有大量的子问题是重复的,那么只需要求解一次,然后把结果存储在表中,以后使用时可以直接查询,不需要再次求解。子问题重叠不是使用动态规划的必要条件,但问题存在子问题重叠更能够充分彰显动态规划的优势。

什么问题可以使用动态规划呢?我们首先要分析问题是否具有以下两个性质:

(1) 最优子结构

最优子结构性质是指问题的最优解包含其子问题的最优解。最优子结构是使用动态规划的最基本条件,如果不具有最优子结构性质就不可以使用动态规划解决。

(2) 子问题重叠

子问题重叠是指在求解子问题的过程中,有大量的子问题是重复的,那么只需要求解一次,然后把结果存储在表中,以后使用时可以直接查询,不需要再次求解。子问题重叠不是使用动态规划的必要条件,但问题存在子问题重叠更能够充分彰显动态规划的优势。

4.1.1 解题秘籍

遇到一个实际问题,如何采用动态规划来解决呢?

(1) 分析最优解的结构特征。

(2) 建立最优值的递归式。

(3) 自底向上计算最优值,并记录。

(4) 构造最优解。

本章通过8个实例,讲解了动态规划的解题过程。动态规划求解最优化问题时需要考虑两个性质:最优子结构和子问题重叠,只要满足最优子结构性质就可以使用动态规划,如果还具有子问题重叠,则更能彰显动态规划的优势。判断可以使用动态规划后,就可以分析其最优子结构特征,找到原问题和子问题的关系,从而得到最优解递归式。然后按照最优解递归式自底向上求解,采用备忘机制(查表法)有效解决子问题重叠,重复的子问题不需要重复求解,只需查表即可。

动态规划的关键:

(1)最优子结构判定

a. 作出一个选择;

b. 假定已经知道了哪种选择是最优的;

例如矩阵连乘问题,我们假设已经知道在第k个矩阵加括号是最优的,即(AiAi+1…Ak)(Ak+1Ak+2…Aj)。

c. 最优选择后会产生哪些子问题;

例如矩阵连乘问题,我们作出最优选择后产生两个子问题:(AiAi+1…Ak),(Ak+1Ak+2…Aj)。

d. 证明原问题的最优解包含其子问题的最优解。

通常使用“剪切—粘贴”反证法。证明如果原问题的解是最优解,那么子问题的解也是最优解。反证:假定子问题的解不是最优解,那么就可以将它“剪切”掉,把最优解“粘贴”进去,从而得到一个比原问题最优解更优的解,这与前提原问题的解是最优解矛盾。得证。

例如:矩阵连乘问题,c=a+b+d,我们只需要证明如果c是最优的,则a和b一定是最优的(即原问题的最优解包含子问题的最优解)。

反证法:如果a不是最优的,(AiAi+1…Ak) 存在一个最优解aˊ,aˊ<a,那么,aˊ+b+d<c,这与假设c是最优的矛盾,因此如果c是最优的,则a一定是最优的。同理可证b也是最优的。因此如果c是最优的,则a和b一定是最优的。因此,矩阵连乘问题具有最优子结构性质。

(2)如何得到最优解递归式

a.分析原问题最优解和子问题最优解的关系;

例如矩阵连乘问题,我们假设已经知道在第k个矩阵加括号是最优的,即(AiAi+1…Ak)(Ak+1Ak+2…Aj)。作出最优选择后产生两个子问题:(AiAi+1…Ak),(Ak+1Ak+2…Aj)。如果我们用m[i][j]表示AiAi+1…Aj矩阵连乘的最优解,那么两个子问题:(AiAi+1…Ak),(Ak+1Ak+2…Aj)对应的最优解分别是m[i][k],m[k+1][j]。剩下的只需要考察(AiAi+1…Ak)和(Ak+1Ak+2…Aj)的结果矩阵相乘的乘法次数了。两个结果矩阵相乘的乘法次数是pi*pk+1*qj。

因此,原问题最优解和子问题最优解的关系:m[i][j]= m[i][k]+m[k+1][j]+ pi*pk+1*qj

b.考察有多少种选择;

实质上,我们并不知道哪种选择是最优的,因此就需要考察有多少种选择,然后从这些选择中找到最优解。

例如矩阵连乘问题,加括号的位置k(AiAi+1…Ak)(Ak+1Ak+2…Aj),k的取值范围是{i,i+1,…,j-1},即i≤k<j,那么我们考察每一种选择,找到最优值。

c.得到最优解递归式。

例如矩阵连乘问题,m[i][j]表示AiAi+1…Aj矩阵连乘的最优解,根据最优解和子问题最优解的关系,并考察所有的选择,找到最小值就是我们要的最优解。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年12月26日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档