Elasticsearch(ES)是一个基于Lucene的近实时分布式存储及搜索分析系统,其应用场景广泛,可应用于日志分析、全文检索、结构化数据分析等多种场景,既可作为NoSQL数据库,也可作为搜索引擎。由于ES具备如此强悍的能力,因此吸引了很多公司争相使用,如维基百科、GitHub、Stack Overflow等。
对于ES的写入,我们主要关心写入的实时性及可靠性。本文将通过源码来探索ES写入的具体流程。
ES的写入模型参考了微软的 PacificA协议。写入操作必须在主分片上面完成之后才能被复制到相关的副本分片,如下图所示 :
写操作一般会经历三种节点:协调节点、主分片所在节点、从分片所在节点。上图中NODE1可视为协调节点,协调节点接收到请求后,确定写入的文档属于分片0,于是将请求转发到分片0的主分片所在的节点NODE3,NODE3完成写入后,再将请求转发给分片0所属的从分片所在的节点NODE1和NODE2,待所有从分片写入成功后,NODE3则认为整个写入成功并将结果反馈给协调节点,协调节点再将结果返回客户端。
上述为写入的大体流程,整个流程的具体细节,下面会结合源码进行解析。
ES的写入有两种方式一种是逐个文档写入(index),另一种是多个文档批量写入(bulk)。对于这两种写入方式,ES都会将其转换为bulk写入。本节,我们就以bulk写入为例,根据代码执行主线来分析ES写入的流程。
ES对用户请求一般会经过两层处理,一层是Rest层,另一层是Transport层。Rest层主要进行请求参数解析,Transport层则进行实际用户请求处理。在每一层请求处理前都有一次请求分发,如下图所示:
客户端发送的http请求由HttpServerTransport初步处理后进入RestController模块,在RestController中进行实际的分发过程:
public void dispatchRequest(RestRequest request, RestChannel channel, ThreadContext threadContext) {
if (request.rawPath().equals("/favicon.ico")) {
handleFavicon(request, channel);
return;
}
RestChannel responseChannel = channel;
try {
final int contentLength = request.hasContent() ? request.content().length() : 0;
assert contentLength >= 0 : "content length was negative, how is that possible?";
final RestHandler handler = getHandler(request);
... ...
}
void dispatchRequest(final RestRequest request, final RestChannel channel, final NodeClient client, ThreadContext threadContext,
final RestHandler handler) throws Exception {
... ...
final RestHandler wrappedHandler = Objects.requireNonNull(handlerWrapper.apply(handler));
wrappedHandler.handleRequest(request, channel, client);
... ...
}
}
从上面的代码可以看出在第一个dispatchRequest中,会根据request找到其对应的handler,然后在第二个dispatchRequest中会调用handler的handleRequest方法处理请求。那么getHandler是如何根据请求找到对应的handler的呢?这块的逻辑如下:
public void registerHandler(RestRequest.Method method, String path, RestHandler handler) {
PathTrie<RestHandler> handlers = getHandlersForMethod(method);
if (handlers != null) {
handlers.insert(path, handler);
} else {
throw new IllegalArgumentException("Can't handle [" + method + "] for path [" + path + "]");
}
}
private RestHandler getHandler(RestRequest request) {
String path = getPath(request);
PathTrie<RestHandler> handlers = getHandlersForMethod(request.method());
if (handlers != null) {
return handlers.retrieve(path, request.params());
} else {
return null;
}
}
ES会通过RestController的registerHandler方法,提前把handler注册到对应http请求方法(GET、PUT、POST、DELETE等)的handlers列表。这样用户请求到达时,就可以通过RestController的getHandler方法,并根据http请求方法和路径取出对应的handler。对于bulk操作,其请求对应的handler是RestBulkAction,该类会在其构造函数中将其注册到RestController,代码如下:
public RestBulkAction(Settings settings, RestController controller) {
super(settings);
controller.registerHandler(POST, "/_bulk", this);
controller.registerHandler(PUT, "/_bulk", this);
controller.registerHandler(POST, "/{index}/_bulk", this);
controller.registerHandler(PUT, "/{index}/_bulk", this);
controller.registerHandler(POST, "/{index}/{type}/_bulk", this);
controller.registerHandler(PUT, "/{index}/{type}/_bulk", this);
this.allowExplicitIndex = MULTI_ALLOW_EXPLICIT_INDEX.get(settings);
}
RestBulkAction会将RestRequest解析并转化为BulkRequest,然后再对BulkRequest做处理,这块的逻辑在prepareRequest方法中,部分代码如下:
public RestChannelConsumer prepareRequest(final RestRequest request, final NodeClient client) throws IOException {
// 根据RestRquest构建BulkRequest
... ...
// 处理bulkRequest
return channel -> client.bulk(bulkRequest, new RestStatusToXContentListener<>(channel));
}
NodeClient在处理BulkRequest请求时,会将请求的action转化为对应Transport层的action,然后再由Transport层的action来处理BulkRequest,action转化的代码如下:
public < Request extends ActionRequest, Response extends ActionResponse >
Task executeLocally(GenericAction<Request, Response> action, Request request, TaskListener<Response> listener) {
return transportAction(action).execute(request, listener);
}
private < Request extends ActionRequest,Response extends ActionResponse >
TransportAction<Request, Response> transportAction(GenericAction<Request, Response> action) {
... ...
// actions是个action到transportAction的映射,这个映射关系是在节点启动时初始化的
TransportAction<Request, Response> transportAction = actions.get(action);
... ...
return transportAction;
}
TransportAction会调用一个请求过滤链来处理请求,如果相关的插件定义了对该action的过滤处理,则先会执行插件的处理逻辑,然后再进入TransportAction的处理逻辑,过滤链的处理逻辑如下:
public void proceed(Task task, String actionName, Request request, ActionListener<Response> listener) {
int i = index.getAndIncrement();
try {
if (i < this.action.filters.length) {
this.action.filters[i].apply(task, actionName, request, listener, this); // 应用插件的逻辑
} else if (i == this.action.filters.length) {
this.action.doExecute(task, request, listener); // 执行TransportAction的处理逻辑
} else ... ...
} catch(Exception e) { ... ... }
}
对于Bulk请求,这里的TransportAction对应的具体对象是TransportBulkAction的实例,到此,Rest层转化为Transport层的流程完成,下节将详细介绍TransportBulkAction的处理逻辑。
3.2 写入步骤
如果bulk写入时,index未创建则es会自动创建出对应的index,处理逻辑在TransportBulkAction的doExecute方法中:
for (String index : indices) {
boolean shouldAutoCreate;
try {
shouldAutoCreate = shouldAutoCreate(index, state);
} catch (IndexNotFoundException e) {
shouldAutoCreate = false;
indicesThatCannotBeCreated.put(index, e);
}
if (shouldAutoCreate) {
autoCreateIndices.add(index);
}
}
... ...
for (String index : autoCreateIndices) {
createIndex(index, bulkRequest.timeout(), new ActionListener<CreateIndexResponse>() {
... ...
}
我们可以看到,在for循环中,会遍历bulk的所有index,然后检查index是否需要自动创建,对于不存在的index,则会加入到自动创建的集合中,然后会调用createIndex方法创建index。index的创建由master来把控,master会根据分片分配和均衡的算法来决定在哪些data node上创建index对应的shard,然后将信息同步到data node上,由data node来执行具体的创建动作。index创建的具体流程在后面的文章中将会做分析,这里不展开介绍了。
创建完index后,index的各shard已在数据节点上建立完成,接着协调节点将会转发写入请求到文档对应的primary shard。协调节点处理Bulk请求转发的入口为executeBulk方法:
void executeBulk(Task task, final BulkRequest bulkRequest, final long startTimeNanos, final ActionListener<BulkResponse> listener,
final AtomicArray<BulkItemResponse> responses, Map<String, IndexNotFoundException> indicesThatCannotBeCreated) {
new BulkOperation(task, bulkRequest, listener, responses, startTimeNanos, indicesThatCannotBeCreated).run();
}
真正的执行逻辑在BulkOperation的doRun方法中,首先,遍历BulkRequest的所有子请求,然后根据请求的操作类型执行相应的逻辑,对于写入请求,会首先根据IndexMetaData信息,为每条写入请求IndexRequest生成路由信息,并在process过程中按需生成_id字段:
for (int i = 0; i < bulkRequest.requests.size(); i++) {
DocWriteRequest docWriteRequest = bulkRequest.requests.get(i);
... ...
Index concreteIndex = concreteIndices.resolveIfAbsent(docWriteRequest);
try {
switch (docWriteRequest.opType()) {
case CREATE:
case INDEX:
... ...
indexRequest.resolveRouting(metaData); // 根据metaData对indexRequest的routing赋值
indexRequest.process(mappingMd, allowIdGeneration, concreteIndex.getName()); // 这里,如果用户没有指定doc id,则会自动生成
break;
... ...
}
} catch (... ...) { ... ... }
}
然后根据每个IndexRequest请求的路由信息(如果写入时未指定路由,则es默认使用doc id作为路由)得到所要写入的目标shard id,并将DocWriteRequest封装为BulkItemRequest且添加到对应shardId的请求列表中。代码如下:
for (int i = 0; i < bulkRequest.requests.size(); i++) {
DocWriteRequest request = bulkRequest.requests.get(i); // 从bulk请求中得到每个doc写入请求
// 根据路由,找出doc写入的目标shard id
ShardId shardId = clusterService.operationRouting().indexShards(clusterState, concreteIndex, request.id(), request.routing()).shardId();
// requestsByShard的key是shard id,value是对应的单个doc写入请求(会被封装成BulkItemRequest)的集合
List<BulkItemRequest> shardRequests = requestsByShard.computeIfAbsent(shardId, shard -> new ArrayList<>());
shardRequests.add(new BulkItemRequest(i, request));
}
上一步已经找出每个shard及其所需执行的doc写入请求列表的对应关系,这里就相当于将请求按shard进行了拆分,接下来会将每个shard对应的所有请求封装为BulkShardRequest并交由TransportShardBulkAction来处理:
for (Map.Entry<ShardId, List<BulkItemRequest>> entry : requestsByShard.entrySet()) {
final ShardId shardId = entry.getKey();
final List<BulkItemRequest> requests = entry.getValue();
// 对每个shard id及对应的BulkItemRequest集合,封装为一个BulkShardRequest
BulkShardRequest bulkShardRequest = new BulkShardRequest(shardId, bulkRequest.getRefreshPolicy(),
requests.toArray(new BulkItemRequest[requests.size()]));
shardBulkAction.execute(bulkShardRequest, new ActionListener<BulkShardResponse>() {
... ...
});
}
执行逻辑最终会进入到doRun方法中,这里会通过ClusterState获取到primary shard的路由信息,然后得到primay shard所在的node,如果node为当前协调节点则直接将请求发往本地,否则发往远端:
protected void doRun() {
......
final ShardRouting primary = primary(state); // 获取primary shard的路由信息
... ...
// 得到primary所在的node
final DiscoveryNode node = state.nodes().get(primary.currentNodeId());
if (primary.currentNodeId().equals(state.nodes().getLocalNodeId())) {
// 如果primary所在的node和primary所在的node一致,则直接在本地执行
performLocalAction(state, primary, node, indexMetaData);
} else {
// 否则,发送到远程node执行
performRemoteAction(state, primary, node);
}
}
在performAction方法中,会调用TransportService的sendRequest方法,将请求发送出去。如果对端返回异常,比如对端节点故障或者primary shard挂了,对于这些异常,协调节点会有重试机制,重试的逻辑为等待获取最新的集群状态,然后再根据集群的最新状态(通过集群状态可以拿到新的primary shard信息)重新执行上面的doRun逻辑;如果在等待集群状态更新时超时,则会执行最后一次重试操作(执行doRun)。这块的代码如下:
void retry(Exception failure) {
assert failure != null;
if (observer.isTimedOut()) {
// 超时时已经做过最后一次尝试,这里将不会重试了
finishAsFailed(failure);
return;
}
setPhase(task, "waiting_for_retry");
request.onRetry();
request.primaryTerm(0L);
observer.waitForNextChange(new ClusterStateObserver.Listener() {
@Override
public void onNewClusterState(ClusterState state) {
run(); // 会调用doRun
}
@Override
public void onClusterServiceClose() {
finishAsFailed(new NodeClosedException(clusterService.localNode()));
}
@Override
public void onTimeout(TimeValue timeout) { // 超时,做最后一次重试
run(); // 会调用doRun
}
});
}
primary所在的node收到协调节点发过来的写入请求后,开始正式执行写入的逻辑,写入执行的入口是在ReplicationOperation类的execute方法,该方法中执行的两个关键步骤是,首先写主shard,如果主shard写入成功,再将写入请求发送到从shard所在的节点。
public void execute() throws Exception {
......
// 关键,这里开始执行写primary shard
primaryResult = primary.perform(request);
final ReplicaRequest replicaRequest = primaryResult.replicaRequest();
if (replicaRequest != null) {
......
// 关键步骤,写完primary后这里转发请求到replicas
performOnReplicas(replicaRequest, shards);
}
successfulShards.incrementAndGet();
decPendingAndFinishIfNeeded();
}
下面,我们来看写primary的关键代码,写primary入口函数为TransportShardBulkAction.shardOperationOnPrimary:
public WritePrimaryResult<BulkShardRequest, BulkShardResponse> shardOperationOnPrimary(
BulkShardRequest request, IndexShard primary) throws Exception {
... ...
Translog.Location location = null;
for (int requestIndex = 0; requestIndex < request.items().length; requestIndex++) {
if (isAborted(request.items()[requestIndex].getPrimaryResponse()) == false) {
location = executeBulkItemRequest(metaData, primary, request, preVersions, preVersionTypes, location, requestIndex);
}
}
... ...
}
写主时,会遍历一个bulk任务,逐个执行具体的写入请求,ES调用InternalEngine.Index将数据写入lucene并会将整个写入操作命令添加到translog,如下所示:
final IndexResult indexResult;
if (plan.earlyResultOnPreFlightError.isPresent()) {
indexResult = plan.earlyResultOnPreFlightError.get();
assert indexResult.hasFailure();
} else if (plan.indexIntoLucene) {
// 将数据写入lucene,最终会调用lucene的文档写入接口
indexResult = indexIntoLucene(index, plan);
} else {
assert index.origin() != Operation.Origin.PRIMARY;
indexResult = new IndexResult(plan.versionForIndexing, plan.currentNotFoundOrDeleted);
}
if (indexResult.hasFailure() == false &&
plan.indexIntoLucene && // if we didn't store it in lucene, there is no need to store it in the translog
index.origin() != Operation.Origin.LOCAL_TRANSLOG_RECOVERY) {
Translog.Location location =
translog.add(new Translog.Index(index, indexResult)); // 写translog
indexResult.setTranslogLocation(location);
}
从以上代码可以看出,ES的写入操作是先写lucene,将数据写入到lucene内存后再写translog,这里和传统的WAL先写日志后写内存有所区别。ES之所以先写lucene后写log主要原因大概是写入Lucene时,Lucene会再对数据进行一些检查,有可能出现写入Lucene失败的情况。如果先写translog,那么就要处理写入translog成功但是写入Lucene一直失败的问题,所以ES采用了先写Lucene的方式。
在写完primary后,会继续写replicas,接下来需要将请求转发到从节点上,如果replica shard未分配,则直接忽略;如果replica shard正在搬迁数据到其他节点,则将请求转发到搬迁的目标shard上,否则,转发到replica shard。这块代码如下:
private void performOnReplicas(ReplicaRequest replicaRequest, List<ShardRouting> shards) {
final String localNodeId = primary.routingEntry().currentNodeId();
// If the index gets deleted after primary operation, we skip replication
for (final ShardRouting shard : shards) {
if (executeOnReplicas == false || shard.unassigned()) {
if (shard.primary() == false) {
totalShards.incrementAndGet();
}
continue;
}
if (shard.currentNodeId().equals(localNodeId) == false) {
performOnReplica(shard, replicaRequest);
}
if (shard.relocating() && shard.relocatingNodeId().equals(localNodeId) == false) {
performOnReplica(shard.getTargetRelocatingShard(), replicaRequest);
}
}
}
performOnReplica方法会将请求转发到目标节点,如果出现异常,如对端节点挂掉、shard写入失败等,对于这些异常,primary认为该replica shard发生故障不可用,将会向master汇报并移除该replica。这块的代码如下:
private void performOnReplica(final ShardRouting shard, final ReplicaRequest replicaRequest) {
totalShards.incrementAndGet();
pendingActions.incrementAndGet();
replicasProxy.performOn(shard, replicaRequest, new ActionListener<TransportResponse.Empty>() {
@Override
public void onResponse(TransportResponse.Empty empty) {
successfulShards.incrementAndGet();
decPendingAndFinishIfNeeded();
}
@Override
public void onFailure(Exception replicaException) {
if (TransportActions.isShardNotAvailableException(replicaException)) {
decPendingAndFinishIfNeeded();
} else {
RestStatus restStatus = ExceptionsHelper.status(replicaException);
shardReplicaFailures.add(new ReplicationResponse.ShardInfo.Failure(
shard.shardId(), shard.currentNodeId(), replicaException, restStatus, false));
replicasProxy.failShard(shard, message, replicaException,
ReplicationOperation.this::decPendingAndFinishIfNeeded,
ReplicationOperation.this::onPrimaryDemoted,
throwable -> decPendingAndFinishIfNeeded()
);
}
}
});
}
replica的写入逻辑和primary类似,这里不再具体介绍。为了防止primary挂掉后不丢数据,ES会等待所有replicas都写入成功后再将结果反馈给客户端。因此,写入耗时会由耗时最长的replica决定。至此,ES的整个写入流程已解析完毕。
本文主要分析了ES分布式框架写入的主体流程,对其中的很多细节未做详细剖析,后面会通过一些文章对写入涉及的细节做具体分析,欢迎大家一起交流讨论。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。