马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示点与一个分布之间的距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是,它考虑到各种特性之间的联系,本文介绍马氏距离相关内容。
距离度量在各个学科中有着广泛用途,当数据表示为向量\overrightarrow{\mathbf{x} }=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}和\overrightarrow{\mathbf{y}}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{T}时,最直观的距离度量就是欧式距离了:
但是这种度量方式没有考虑到各个维度之间的差异和相关等因素,不同的向量度量距离时权重都相同,这可能会对结果可信度产生干扰。
度量样本距离某个分布的距离,先将样本与分布标准化到多维标准正态分布后度量欧式距离
此时我们期望在Q^T的作用下,Y 的向量表示中,不同维度之间是相互独立的,此时Y 的协方差矩阵应该是一个对角矩阵(除对角线元素外,其余元素均为0)。
接下来我们对向量进行标准化
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有