「首先恭喜YOLOv7登录CVPR2023的顶会列车!!!」
YOLOv7-u6分支的实现是基于Yolov5和Yolov6进行的。并在此基础上开发了Anchor-Free方法。所有安装、数据准备和使用与Yolov5相同,大家可以酌情尝试,如果电费不要钱,那就不要犹豫了!!!
当时原始版本就是无敌的存在,YOLOv7的base版本就有51.2的精度了!!!
再看原作复现的Anchor-Free版本,相对于原始版本的51.2的精度,分别提升了1.1个点和1.4个点(使用了albumentation数据增强),可以看出还是很给力的结构。
其实,关于复现的YOLOv7-u6(Anchor-Free),Backbone和Neck部分是没有发生变化的,下面看一下Head部分的变化。
通过下图的YAML知道,YOLOv7的head使用了重参结构,并且也加入了隐藏知识Trick的加入。
去除了RepConv卷积,使用了最为基本的Conv模块,同时检测头换为了YOLOv6的Head形式,同时加入了IDetect的隐藏知识Implicit层思想。
class IV6Detect(nn.Module):
dynamic = False # force grid reconstruction
export = False # export mode
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.inplace = inplace # use inplace ops (e.g. slice assignment)
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max(ch[0] // 4, 16), max(ch[0], self.no - 4) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
self.cv3 = nn.ModuleList(
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
# DFL层
self.dfl = DFL(self.reg_max)
# Implicit层
self.ia2 = nn.ModuleList(ImplicitA(x) for x in ch)
self.ia3 = nn.ModuleList(ImplicitA(x) for x in ch)
self.im2 = nn.ModuleList(ImplicitM(4 * self.reg_max) for _ in ch)
self.im3 = nn.ModuleList(ImplicitM(self.nc) for _ in ch)
def forward(self, x):
shape = x[0].shape # BCHW
for i in range(self.nl):
x[i] = torch.cat((self.im2[i](self.cv2[i](self.ia2[i](x[i]))), self.im3[i](self.cv3[i](self.ia3[i](x[i])))), 1)
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
if self.training:
return x, box, cls
elif self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
y = torch.cat((dbox, cls.sigmoid()), 1)
return y if self.export else (y, (x, box, cls))
def bias_init(self):
m = self # self.model[-1] # Detect() module
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)
一句话吧,其实就是YOLOv8本来的样子,也可能YOLOv8是原来YOLOv7-u6本来的样子。使用了TaskAligned Assigner,BCE Loss、CIOU Loss以及DFL Loss。可以说是标准搭配了!!!
class ComputeLoss:
def __init__(self, model, use_dfl=True):
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
# Define criteria
# 分类损失
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
# Focal loss
g = h["fl_gamma"] # focal loss gamma
if g > 0:
BCEcls = FocalLoss(BCEcls, g)
m = de_parallel(model).model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
self.BCEcls = BCEcls
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.nl = m.nl # number of layers
self.device = device
# 正负样本匹配
self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
num_classes=self.nc,
alpha=float(os.getenv('YOLOA', 0.5)),
beta=float(os.getenv('YOLOB', 6.0)))
# 回归损失函数
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
self.use_dfl = use_dfl
[1].https://github.com/WongKinYiu/yolov7/tree/u6.