https://blog.csdn.net/qq_27559331/article/details/99373734
https://zhuanlan.zhihu.com/p/342580205
https://zhuanlan.zhihu.com/p/515672456?utm_id=0
https://zhuanlan.zhihu.com/p/621605230
https://www.cnblogs.com/muxianbai/p/15127751.html
1、hash
哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。
不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。
你可以设想下,如果你现在要找身份证号在ID_card_X, ID_card_Y这个区间的所有用户,就必须全部扫描一遍了。
所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。
2、有序数组
而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:
所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。
3、跳表
Redis中使用
4、搜索树
(1)二叉搜索树
二叉搜索树的特点是:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。
当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。
(2)红黑树
(3)B树
B树木和B+树的区别
https://blog.csdn.net/ChaoticNg/article/details/114588507
(4)B+树
B+树是对B树的一种变形树,它与B树的差异在于:
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。
以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。
(5)LSM树
在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。
InnoDB使用了B+树索引模型,每一个索引在InnoDB里面对应一棵B+树。
聚簇索引的叶子结点上存放的是完整的每行数据记录,普通索引的叶子结点上包含该行的主键列,以及为二级索引指定的列
至于为什么使用B+树,请参考
https://www.cnblogs.com/muxianbai/p/15127751.html
假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。这个表的建表语句是:
create table T(id int primary key, k int not null,name varchar(16),index (k))engine=InnoDB;
从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。
在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。根据上面的索引结构说明,讨
https://dev.mysql.com/doc/refman/5.7/en/innodb-indexes.html
聚簇索引并不是一种单独的索引类型,而是一种数据存储方式(所有的用户记录都存储在了叶子节点),也就是所谓的索引即数据,数据即索引。
聚簇索引的叶子结点上存放的是完整的每行数据记录
通过聚簇索引访问行很快,因为索引搜索直接指向包含行数据的页面。 如果表很大,与使用索引记录的不同页面存储行数据的存储组织相比,聚集索引架构通常可以节省磁盘 I/O 操作
聚簇索引以外的索引称为二级索引。 在 InnoDB 中,二级索引中的每条记录都包含该行的主键列,以及为二级索引指定的列。 InnoDB 使用这个主键值来搜索聚集索引中的行。
讨论一个问题:基于主键索引和普通索引的查询有什么区别?
如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表
也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。
如果执行的语句是select 主键 from T where key = 3,这时只需要查主键的值,而主键的值已经在key索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引key已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
在建立联合索引的时候,如何安排索引内的字段顺序?
因为可以支持最左前缀,所以当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
一种mysql根据查询的优化方式,即将mysql过滤从服务层到引擎层
Before:根据索引查询记录,然后根据Where来过滤记录
After:Mysql数据库在取出索引的同时,判断是否可以进行Where条件过滤,也就是将Where的部分过滤操作放到了存储引擎层。
https://baijiahao.baidu.com/s?id=1716515482593299829&wfr=spider&for=pc
不符合最左前缀的部分,会怎么样呢?
以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是10岁的所有男孩”。那么,SQL语句是这么写的:
select * from tuser where name like '张%' and age=10 and ismale=1;
在MySQL 5.6之前,只能从name为“张”开头的记录的ID开始一个个回表。到主键索引上找出数据行,再对比字段值。
而MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。InnoDB在(name,age)索引内部就判断了age是否等于10,对于不等于10的记录,直接判断并跳过。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有