前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序)

二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序)

作者头像
淼学派对
发布2023-10-26 15:09:49
3030
发布2023-10-26 15:09:49
举报
文章被收录于专栏:云开发小程序1

二分查找算法,也称为折半查找算法,是一种在有序数组中查找特定元素的高效算法。它的基本思想是将查找的区间逐渐缩小,直到找到目标元素或者确定目标元素不存在。

算法步骤如下:

  1. 初始化:首先,确定数组的左右边界,通常初始时左边界为数组的起始索引,右边界为数组的末尾索引。
  2. 找到中间元素:计算左右边界的中间索引,然后取得该索引处的元素值。
  3. 比较中间元素
    • 如果中间元素等于目标值,查找成功,返回元素索引。
    • 如果中间元素大于目标值,说明目标值应该在左半边,将右边界移动到中间索引的左边一位。
    • 如果中间元素小于目标值,说明目标值应该在右半边,将左边界移动到中间索引的右边一位。
  4. 重复:在新的查找区间中,重复步骤2和步骤3,直到左边界大于右边界,此时查找失败,返回-1,或者返回指示元素不存在的其他值。

算法特点

  • 二分查找算法的时间复杂度是O(log n),其中n是数组的大小。这是因为每一次比较都将查找范围缩小为原来的一半。
  • 但是,二分查找算法要求输入的数据必须是有序的。如果数组无序,需要事先进行排序操作。
  • 由于二分查找每次将查找范围缩小为一半,因此它的效率非常高,尤其是在大型数据集中的查找操作。
  • 二分查找算法是一种迭代的算法,也可以使用递归实现。

Java版:

代码语言:javascript
复制
package LeetCode_1.Binary_search;
//小淼的算法之路

//二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序)


public class Binary_search {
    //二分查找算法版本1.0
    public static int BinarySearchBasic(int[] a, int target){
        int i = 0,j = a.length -1;//设置指针和初值
        while (i <= j){
            int m = (i + j)>>>1;//m:中间值
            if(target < a[m]){//若查找的在中间值左边(小于中间值),最大值指针j占据中间值-1的位置,在进行计算
                j = m -1;
            } else if (a[m] < target){//若查找的在中间值右边(大于中间值),最小值指针j占据中间值+1的位置,在进行计算
                i = m + 1;
            } else {
                return m;//否则就是target值与中间值相等,直接返回中间值
            }
        }
        return -1;//不存在时返回-1,因为能找到的都在数组当中,在数组中的都有一个索引值,所以能找到的输出的数组索引值不可能为-1
    }
    /*本题问题1:为什么i<=j 意味着区间未比较的元素,而不是i<j  ?
     *       答:因为i,j 它们指向的元素也会参与比较,若i<j,则参与比较的只能是i与j中间的值,若这时i与j指向的元素相同则该算法会发生错误。
     * 本题问题2:为什么int m = (i + j)>>>1;,而不是int m = (i + j) / 2;  ?
     *       答:如果使用int m = (i + j) / 2 来确定中间值的话多次循环会有问题:这与二进制的第一位是不是符号位有关(1:负,0:正)。
     *           然而int m = (i + j)>>>1 这种方式:将i+j表示成的二进制整体向右移动一位(二进制对应的十进制做/2操作)
     * */

    //二分查找算法版本2.0
    public static int BinarySearchUpgrades(int[] a, int target){
        int i = 0,j = a.length;         //第一处改动
        while (i < j){                  //第二处改动
            int m = (i + j)>>>1;
            if(target < a[m]){
                j = m;                  //第三处改动
            } else if (a[m] < target){
                i = m + 1;
            } else {
                return m;
            }
        }
        return -1;
    }

    //测试类
    public static void main(String[] args) {
        int[] a = {7,13,21,30,38,44,52,53,78,79,88,89,91,92,93,94};
        int target = 92;
        long startTime = System.nanoTime();;//开始时时间点
        int result = BinarySearchBasic(a, target);//执行的算法
        long endTime = System.nanoTime();//结束时时间点
        long elapsedTime = endTime - startTime;//算法占用时间
        if (result != -1) {
            System.out.println("二分查找法1.0版本----------"+"目标值 " + target + " 在数组中的索引是 " + result+"\n"+"算法执行时间(纳秒): " + elapsedTime);
        } else {
            System.out.println("二分查找法1.0版本----------"+"目标值 " + target + " 未在数组中找到");
        }
        long startTime_1 = System.nanoTime();;//开始时时间点
        int result_1 = BinarySearchUpgrades(a, target);
        long endTime_1 = System.nanoTime();//结束时时间点
        long elapsedTime_1 = endTime_1 - startTime_1;//算法占用时间
        if (result_1 != -1) {
            System.out.println("二分查找法2.0版本----------"+"目标值 " + target + " 在数组中的索引是 " + result_1+"\n"+"算法执行时间(纳秒): " + elapsedTime_1);
        } else {
            System.out.println("二分查找法2.0版本----------"+"目标值 " + target + " 未在数组中找到");
        }
    }
}

JavaScript:

代码语言:javascript
复制
function binarySearchBasic(a, target) {
    let i = 0, j = a.length - 1; // 设置指针和初值
    while (i <= j) {
        let m = (i + j) >>> 1; // m:中间值
        if (target < a[m]) {
            // 若查找的在中间值左边(小于中间值),最大值指针j占据中间值-1的位置,在进行计算
            j = m - 1;
        } else if (a[m] < target) {
            // 若查找的在中间值右边(大于中间值),最小值指针j占据中间值+1的位置,在进行计算
            i = m + 1;
        } else {
            return m; // 否则就是target值与中间值相等,直接返回中间值
        }
    }
    return -1; // 不存在时返回-1,因为能找到的都在数组当中,在数组中的都有一个索引值,所以能找到的输出的数组索引值不可能为-1
}

function binarySearchUpgrades(a, target) {
    let i = 0, j = a.length; // 第一处改动
    while (i < j) { // 第二处改动
        let m = (i + j) >>> 1;
        if (target < a[m]) {
            j = m; // 第三处改动
        } else if (a[m] < target) {
            i = m + 1;
        } else {
            return m;
        }
    }
    return -1;
}

const a = [7, 13, 21, 30, 38, 44, 52, 53, 78, 79, 88, 89, 91, 92, 93, 94];
const target = 92;

let startTime = performance.now(); // 开始时时间点
let result = binarySearchBasic(a, target);
let endTime = performance.now(); // 结束时时间点
let elapsedTime = endTime - startTime; // 算法占用时间

if (result !== -1) {
    console.log(`二分查找法1.0版本---------- 目标值 ${target} 在数组中的索引是 ${result}\n算法执行时间(毫秒): ${elapsedTime}`);
} else {
    console.log(`二分查找法1.0版本---------- 目标值 ${target} 未在数组中找到`);
}

let startTime1 = performance.now(); // 开始时时间点
let result1 = binarySearchUpgrades(a, target);
let endTime1 = performance.now(); // 结束时时间点
let elapsedTime1 = endTime1 - startTime1; // 算法占用时间

if (result1 !== -1) {
    console.log(`二分查找法2.0版本---------- 目标值 ${target} 在数组中的索引是 ${result1}\n算法执行时间(毫秒): ${elapsedTime1}`);
} else {
    console.log(`二分查找法2.0版本---------- 目标值 ${target} 未在数组中找到`);
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-10-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档