前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >BRIA.AI开源最强AI一键抠图模型RMBG,超简上手体验

BRIA.AI开源最强AI一键抠图模型RMBG,超简上手体验

作者头像
AIWalker
发布2024-02-17 14:47:02
2.7K0
发布2024-02-17 14:47:02
举报
文章被收录于专栏:AIWalker

近日,BRIA.AI团队于HuggingFace开源了一个基于ISNet背景移除模型RMBG-1.4,它可以有效对前景与背景进行分离。RMBG-1.4在精心构建的数据集上训练而来,该数据包含常规图像、电商、游戏以及广告内容,该方案达到了商业级性能,但仅限于非商业用途。关于所用到的训练数据:12000+高质量&高分辨率像素级精度手工标注。更详细的数据分布介绍请移步[RMBG-1.4].

著名的HuggingFace上已有该背景移除模型的体验Demo,见:https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4,用户只需要上传图片即可体验

当然,也有效果不那么好的,比如下面这张:

快速实战

代码下载

代码语言:javascript
复制
git clone https://huggingface.co/briaai/RMBG-1.4
cd RMBG-1.4/
pip install -r requirements.txt

代码调用示例

代码语言:javascript
复制
from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image

im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"

net = BriaRMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
net.to(device)

# prepare input
model_input_size = [1024,1024]
orig_im = io.imread(im_path)
orig_im_size = orig_im.shape[0:2]
image = preprocess_image(orig_im, model_input_size).to(device)

# inference 
result=net(image)

# post process
result_image = postprocess_image(result[0][0], orig_im_size)

# save result
pil_im = Image.fromarray(result_image)
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
orig_image = Image.open(im_path)
no_bg_image.paste(orig_image, mask=pil_im)
no_bg_image.save("example_image_no_bg.png")
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-02-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AIWalker 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 快速实战
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档