前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Transformer--输入部分

Transformer--输入部分

作者头像
用户10950404
发布2024-07-30 13:32:52
850
发布2024-07-30 13:32:52
举报
文章被收录于专栏:人工智能

🏷️上文我们简单介绍了Transformer模型的总体架构,本章我们主要介绍其输入部分

📖前言

输入部分主要包括源文本嵌入层以及位置编码器,目标文本嵌入层以及位置编码器


📖文本嵌入层的作用

🏷️无论是源文本嵌入还是目标文本嵌入,都是为了将文本中词汇的数字表示转变为向量表示, 希望在这样的高维空间捕捉词汇间的关系.

  • 文本嵌入层的代码分析:
代码语言:javascript
复制
# 导入必备的工具包
import torch

# 预定义的网络层torch.nn, 工具开发者已经帮助我们开发好的一些常用层, 
# 比如,卷积层, lstm层, embedding层等, 不需要我们再重新造轮子.
import torch.nn as nn

# 数学计算工具包
import math

# torch中变量封装函数Variable.
from torch.autograd import Variable

# 定义Embeddings类来实现文本嵌入层,这里s说明代表两个一模一样的嵌入层, 他们共享参数.
# 该类继承nn.Module, 这样就有标准层的一些功能, 这里我们也可以理解为一种模式, 我们自己实现的所有层都会这样去写.
class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        """类的初始化函数, 有两个参数, d_model: 指词嵌入的维度, vocab: 指词表的大小."""
        # 接着就是使用super的方式指明继承nn.Module的初始化函数, 我们自己实现的所有层都会这样去写.
        super(Embeddings, self).__init__()
        # 之后就是调用nn中的预定义层Embedding, 获得一个词嵌入对象self.lut
        self.lut = nn.Embedding(vocab, d_model)
        # 最后就是将d_model传入类中
        self.d_model = d_model

    def forward(self, x):
        """可以将其理解为该层的前向传播逻辑,所有层中都会有此函数
           当传给该类的实例化对象参数时, 自动调用该类函数
           参数x: 因为Embedding层是首层, 所以代表输入给模型的文本通过词汇映射后的张量"""

        # 将x传给self.lut并与根号下self.d_model相乘作为结果返回

        # 让 embeddings vector 在增加 之后的 postion encoing 之前相对大一些的操作,
        # 主要是为了让position encoding 相对的小,这样会让原来的 embedding vector 中的信息在和 position encoding 的信息相加时不至于丢失掉
        # 让 embeddings vector 相对大一些
        return self.lut(x) * math.sqrt(self.d_model)

📖位置编码器的作用

🏷️因为在Transformer的编码器结构中, 并没有针对词汇位置信息的处理,因此需要在Embedding层后加入位置编码器,将词汇位置不同可能会产生不同语义的信息加入到词嵌入张量中, 以弥补位置信息的缺失.

  • 位置编码器的代码分析
代码语言:javascript
复制
# 定义位置编码器类, 我们同样把它看做一个层, 因此会继承nn.Module    
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        """位置编码器类的初始化函数, 共有三个参数, 分别是d_model: 词嵌入维度, 
           dropout: 置0比率, max_len: 每个句子的最大长度"""
        super(PositionalEncoding, self).__init__()

        # 实例化nn中预定义的Dropout层, 并将dropout传入其中, 获得对象self.dropout
        self.dropout = nn.Dropout(p=dropout)

        # 初始化一个位置编码矩阵, 它是一个0阵,矩阵的大小是max_len x d_model.
        pe = torch.zeros(max_len, d_model)

        # 初始化一个绝对位置矩阵, 在我们这里,词汇的绝对位置就是用它的索引去表示. 
        # 所以我们首先使用arange方法获得一个连续自然数向量,然后再使用unsqueeze方法拓展向量维度使其成为矩阵, 
        # 又因为参数传的是1,代表矩阵拓展的位置,会使向量变成一个max_len x 1 的矩阵, 
        position = torch.arange(0, max_len).unsqueeze(1)

        # 绝对位置矩阵初始化之后,接下来就是考虑如何将这些位置信息加入到位置编码矩阵中,
        # 最简单思路就是先将max_len x 1的绝对位置矩阵, 变换成max_len x d_model形状,然后覆盖原来的初始位置编码矩阵即可, 
        # 要做这种矩阵变换,就需要一个1xd_model形状的变换矩阵div_term,我们对这个变换矩阵的要求除了形状外,
        # 还希望它能够将自然数的绝对位置编码缩放成足够小的数字,有助于在之后的梯度下降过程中更快的收敛.  这样我们就可以开始初始化这个变换矩阵了.
        # 首先使用arange获得一个自然数矩阵, 但是细心的同学们会发现, 我们这里并没有按照预计的一样初始化一个1xd_model的矩阵, 
        # 而是有了一个跳跃,只初始化了一半即1xd_model/2 的矩阵。 为什么是一半呢,其实这里并不是真正意义上的初始化了一半的矩阵,
        # 我们可以把它看作是初始化了两次,而每次初始化的变换矩阵会做不同的处理,第一次初始化的变换矩阵分布在正弦波上, 第二次初始化的变换矩阵分布在余弦波上, 
        # 并把这两个矩阵分别填充在位置编码矩阵的偶数和奇数位置上,组成最终的位置编码矩阵.
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        # 这样我们就得到了位置编码矩阵pe, pe现在还只是一个二维矩阵,要想和embedding的输出(一个三维张量)相加,
        # 就必须拓展一个维度,所以这里使用unsqueeze拓展维度.
        pe = pe.unsqueeze(0)

        # 最后把pe位置编码矩阵注册成模型的buffer,什么是buffer呢,
        # 我们把它认为是对模型效果有帮助的,但是却不是模型结构中超参数或者参数,不需要随着优化步骤进行更新的增益对象. 
        # 注册之后我们就可以在模型保存后重加载时和模型结构与参数一同被加载.
        self.register_buffer('pe', pe)

    def forward(self, x):
        """forward函数的参数是x, 表示文本序列的词嵌入表示"""
        # 在相加之前我们对pe做一些适配工作, 将这个三维张量的第二维也就是句子最大长度的那一维将切片到与输入的x的第二维相同即x.size(1),
        # 因为我们默认max_len为5000一般来讲实在太大了,很难有一条句子包含5000个词汇,所以要进行与输入张量的适配. 
        # 最后使用Variable进行封装,使其与x的样式相同,但是它是不需要进行梯度求解的,因此把requires_grad设置成false.
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        # 最后使用self.dropout对象进行'丢弃'操作, 并返回结果.
        return self.dropout(x)

🏷️还有一部分知识设计绘制词汇向量中特征的分布曲线 ,其思想有些抽象,我们只需要知道我们通过上面的操作把嵌入的数值很好的匹配到正弦和余弦图像上,值域的范围都在[-1,1],我们可以更快的计算梯度

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 📖前言
  • 📖文本嵌入层的作用
  • 📖位置编码器的作用
相关产品与服务
腾讯云代码分析
腾讯云代码分析(内部代号CodeDog)是集众多代码分析工具的云原生、分布式、高性能的代码综合分析跟踪管理平台,其主要功能是持续跟踪分析代码,观测项目代码质量,助力维护团队卓越代码文化。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档