这个标题其实就是说明白了,矩阵可逆的意思,先别说我骚,看到后面就知道啦!
我觉得先给一个特别简单的定义可能更好:
标题的意思就是,能不能回到我送你进矩阵之前的模样,要是还能回去那就是可逆,可逆其实讲的是“原料”。有没有那么一个矩阵,可以把变换过的原料再变回去。
(不能不说矩阵)一个矩阵就像是一个加工厂,它能把输入的原材料(向量)加工成输出产品(另一个向量)。这个加工过程可以看成是一个线性变换。
其实真正还原的过程是:伴随矩阵,登场了,
一个看起来很怪异的公式,一个矩阵的逆矩阵,可以通过计算它的伴随矩阵和行列式来实现。
对于一个n阶方阵A,它的伴随矩阵adj(A)的元素是A的代数余子式的代数伴随。也就是说,adj(A)的第i行第j列的元素是A的第j行第i列的余子式的(-1)^(i+j)倍。
adj(A)ij = (-1)^(i+j) * Mji
其中,Mji是矩阵A去掉第i行第j列后得到的子式的行列式。
虽然伴随矩阵的计算过程比较复杂,但它在几何上也有着一定的意义。
在三维空间中,一个矩阵的伴随矩阵可以表示一个与原矩阵对应的平面的法向量。
可以看作是这个变换的“反向工程”配方。它告诉你,如果给你一个成品,如何通过逆向操作,分解出原来的原材料。
我学习主打一个字典学习法,我觉得理解每一个名词背后的意思,就是最深刻的学习过程。比如现在出现的线性变换,你能说出来吗?但是要明确一点,线性变换你要说明白现在在什么空间做变换。
在线性代数里面:线性变换可以看作是向量空间中的一个“拉伸”、“旋转”或者“扭曲”的过程,并且这些变换保持了原空间的直线和平行性。操作不会改变图形的本质(比如直线还是曲线),只会改变它的形状和位置。
但是我觉得,还是不够,继续深入这个话题。
我想说说第一个,矩阵和线性变换的关系:
其他点都是由基向量线性组合得到的,所以当基向量变化时,其他点也会跟着变化。
找到感觉了吗?本质来说,你要操作一个庞大的数据结构,里面装满了点,你可以想就是一个点集。然后这个线性变换就是你要施加的操作。首先我们在变换前建立一个坐标系,那么在这个坐标系里面的每一个点都能有一个独特的ID,也就是XY的坐标。然后去往新空间的时候怎么办?就是按照我们给的这个线性变化的规则。这个规则这里是用矩阵来描述的,一列就是一个小规则,描述的是基向量变换成了什么!!!注意,是基向量,其实没有对每一个点做变换。但是所有空间的点是以基向量作为局部参考系做位置上面的标定的。我们整理一下,我们现在有了要变换的点集,使用一个坐标系来给大家定位。接着给了一个矩阵,是一个方阵,每一列都说明了前面构造点集空间的基向量如何变化,起名字叫线性变换,接着整个变换过程要通过一个运算来完成,叫矩阵乘法。
有一个二维平面,基向量是i=(1,0)和j=(0,1)。现在有一个线性变换,它将i向量变为(2,1),将j向量变为(-1,3)。那么,这个线性变换对应的矩阵就是:
| 2 -1 |
| 1 3 |
回答为什么矩阵的列向量代表变换后的基向量?
在变化过程中,我们不免的要研究,这个过程中,信息到底有没有损失。信号与系统里面还有无损传输呢。
就用矩阵的秩: 矩阵的秩表示了线性变换后空间的维度。如果秩小于原空间的维度,说明变换过程中丢失了一些信息,空间被压缩了。
如果这个函数满足以下两个条件,那么它就是一个线性变换:
晕了吗?其实这里才说到矩阵可逆,但是你要在这个概念之前了解更多。
正统定义看下面:
我觉得可逆矩阵就是引入了1这个好算的东西
帅气
可逆矩阵,也称为非奇异矩阵,指的是一个方阵,且其行列式不为零。
换句话说,对于一个方阵 A,如果存在另一个方阵 B,使得 AB = BA = I(其中 I 是单位矩阵),那么矩阵 A 就是可逆的,矩阵 B 就是 A 的逆矩阵。
逆矩阵是对于一个可逆矩阵 A 而言的,它是一个满足 AB = BA = I 的矩阵 B。可以将逆矩阵看作是矩阵的“倒数”,在矩阵运算中起到类似于数的倒数的作用。
事实上,行列式不为0其实是一个判断的充要条件
A的特征值λ≠0特征值是描述矩阵的一种重要性质,一个矩阵可逆当且仅当它的所有特征值都不为零。
ank(A) = n矩阵的秩等于其阶数,即矩阵的行向量或列向量线性无关。
Ax=0 只有零解x=0这意味着矩阵A的列向量线性无关。对于任意非零向量b,方程Ax=b总有唯一解这个条件与前句条件是等价的。
A = E1E2...Ek其中,Ei是初等矩阵。
矩阵的可逆性反映了矩阵所代表的线性变换的可逆性。如果一个线性变换是可逆的,那么它对应的矩阵就是可逆的。
特征值不能缺席。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有