前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >第十五届蓝桥杯C++B组省赛

第十五届蓝桥杯C++B组省赛

作者头像
用户11305458
发布2024-10-14 08:10:43
1140
发布2024-10-14 08:10:43
举报
文章被收录于专栏:学习

1.握手问题

题目描述:

解题思路1(组合数学)

按照题目描述来说,会议有五十人,如果不加任何限制条件,这五十个人两两握手的次数是:

total=49+48+47+........+1

利用高斯求和的得出:

total=50*49/2

如果加上限制条件的话,题目给定的其中有七个人不会相互握手,需要用上面总的不加限制的减去七个人相互握手的次数。

cnt=6+5+......+1=7*6/2

上述两式作差即可 编写代码:

代码语言:javascript
复制
#include<iostream>
using namespace std;
int main()
{
	int total = 50 * 49 / 2;
	int cnt = 7 * 6 / 2;
	cout << total - cnt << endl;
	return 0;
}

解题思路2(暴力枚举)

将每个人握手的情况枚举出来即可。

代码语言:javascript
复制
#include<iostream>
using namespace std;
int main()
{
	int ans = 0;
	for (int i = 1;i <= 50;i++)
	{
		for (int j = i + 1;j <= 50;j++)
		{
			//排除掉七人的情况
			if (!(i >= 1 && i <= 7 && j >= 1 && j <= 7))
			{
				ans++;
			}
		}
	}
	cout << ans << endl;
	return 0;
}

2.小球反弹

问题描述:

做题思路

这道题我们肯定不能直接做的,这道题给定了

dx:dy

的值说明这道题我们应该分解来做,将小球的反弹的路径分解为x方向和y方向来做。 我们首先假设x方向上经过了p个来回,y方向上经历了q个来回,因为是分解的缘故,所以两个分解方向上的时间是相同的。 所以可以得出两个等式:

dx*t=2px

(由于这里一半的路程是x,所以一个来回的路程是2x,乘以来回就是总路程)

dy*t=2qx

将这两个式子进行比例

\frac{dx}{dy}=\frac{px}{qy}

得到这个式子之后我们可以利用gcd对这个式子的左边进行约分。 可以得出:

p=dx*y

q=dy*x

算出q或者p之后可以利用公式计算t:

t=2px/dx

最后得出总路程:

总路程=t*(sqrt(15^2+17^2))

编写代码:

代码语言:javascript
复制
//求最大公约数
int gcd(int a, int b)
{
	return b == 0 ? a : gcd(b, a % b);
}
int main()
{
	//给出x方向和y方向的速度 
	int dx = 15, dy = 17;
	//给出x方向和y方向上的距离
	int x = 343720, y = 233333;
	//求出多少来回
	int q = dy * x, p = dx * y;
	//求最大公约数
	int g = gcd(p, q);
	p /= g, q /= g;

	//计算时间
	int t = 2 * p * x / dx;

	//求路程
	double ans = t * sqrt(15 * 15 + 17 * 17);
	printf("%.2lf\n", ans);
	return 0;
}

3.好数

问题描述:

数据量:

算法思路(暴力解法)—不会超时

遍历1到n的数,然后写一个check函数判断每个数是否是好数,这里的时间复杂度是

n*logn

编写代码:

代码语言:javascript
复制
#include <iostream>
using namespace std;
int N,count;

bool Check(int n)
{
  int i=1;
  while(n!=0)
  {
    int tail=n%10;
    if(i%2==1)
    {
      if(tail%2!=1)return false;
    }
    else
    {
      if(tail%2!=0)return false;
    }
    i++;
    n/=10;
  }
  return true;
}

int main()
{
  // 请在此输入您的代码
  cin>>N;
  for(int i=1;i<N;i++)
  {
    if(Check(i))
    {
      count++;
    }
  }
  cout<<count<<endl;
  return 0;
}

4.R格式

题目描述:

数据量:

可以看到这道题的数据量是很大的,涉及到了幂次,肯定不可能直接去算,这道题很显然是考察的是高精度算法(高精度*低精度)

算法思路

高精度模版题:

编写代码:

代码语言:javascript
复制
#include<iostream>
#include<algorithm>
#include<string>
#include<cmath>
using namespace std;

//数组模拟高精度:高精度*低精度
const int N = 2e3 + 10;
string s;
int a[N];
int main()
{
	int n;
	cin >> n >> s;
	//反转操作
	reverse(s.begin(), s.end());

	//确定小数点的位置
	int pos = s.find(".");
	s.erase(pos, 1);//删除小数点,方便后续计算
	int len = s.size();
	for (int i = 0;i < len;i++)  a[i + 1] = s[i] - '0';

	//高精度*低精度
	for (int i = 1;i <= n;i++)
	{
		//顺序扫描,均*2
		for (int j = 1;j <= len;j++) a[j] *= 2;
		//处理大于10的位数
		for (int j = 1;j <= len;j++)
		{
			if (a[j] >= 10)
			{
				a[j + 1]++;
				a[j] %= 10;
				if (j == len) len++;
			}
		}
	}

	//处理小数点后的第一位,进行四舍五入

	if (a[pos] >= 5)a[pos + 1]++;

	for (int i = pos + 1;i <= len;i++)
	{
		if (a[i] >= 10)
		{
			a[i + 1]++;
			a[i] %= 10;
			if (i == len)len++;
		}
	}
	
	//打印的时候倒序打印
	for (int i = len;i >= pos + 1;i--) cout << a[i];
	return 0;
}

5.宝石组合

题目描述:

数据范围:

首先从数据量来看这道题是不能用暴力枚举的,因为暴力枚举三个数的时间复杂度是

O(N^3)

了。

算法思路—唯一分解定理

首先我们要知道什么是唯一分解定理,简单来说唯一分解定理就是,任意一个大于1的正整数 ,都可以唯一地表示为若干个质数的乘积,且这些质数的顺序不影响分解的唯一性。 那么可以得出:

N_1 = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_n^{a_n}
N_2 = p_1^{b_1} \cdot p_2^{b_2} \cdot \ldots \cdot p_n^{b_n}

从上面两个式子可以得出:

\gcd(N_1,N_2) = p_1^{\min(a_1,b_1)} \cdot p_2^{\min(a_2,b_2)} \cdot \ldots \cdot p_n^{\min(a_n,b_n)}
\operatorname{lcm}(N_1,N_2) = p_1^{\max(a_1,b_1)} \cdot p_2^{\max(a_2,b_2)} \cdot \ldots \cdot p_n^{\max(a_n,b_n)}

假设Ha,Hb,Hc的分解出来的相同的质数的幂次分别是x,y,z那么可以得出:

上面的式子可以转换为幂次是:

x+y+z+\max(x,y,z)-\max(x,y)-\max(x,z)-\max(y,z)

相当于我们只需要求出上面式子的最大值即可。

编写代码:

代码语言:javascript
复制
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
int a[N];
//fac是存储因子的二维数组,s是求的最大值
vector<int> fac[N], s[N];
int main()
{
	//遍历数组
	for (int i = 1;i <= 1e5;i++)
	{
		for (int j = i;j <= 1e5;j += i)
		{
			//i是j的因子
			fac[j].push_back(i);
		}
	}
	//输入n个数
	int n;cin >> n;
	for (int i = 1;i <= n;i++)cin >> a[i];
	//保证字典序最小
	sort(a + 1, a + n + 1);

	for (int i = 1;i <= n;i++)
	{
		//处理i的每个因子
		for (int j = 0;j < fac[a[i]].size();j++)
		{
			//
			s[fac[a[i]][j]].push_back(a[i]);
		}
	}
	for (int i = 1e5;i >= 0;i--)
	{
		if (s[i].size() >= 3)
		{
			cout << s[i][0] << ' ' << s[i][1] << ' ' << s[i][2] << endl;
			break;
		}
	}
	return 0;
}

6.数字接龙

问题描述:

数据量:

根据数据量来看这道题考察的应该是DFS,但是在DFS中应该还涉及到回溯,因为当走到不满足条件的时候需要进行回溯。

算法思路----DFS

编写代码:

代码语言:javascript
复制
#include<iostream>
#include<string>
using namespace std;
const int N = 20;
int a[N][N];
bool vis[N][N];
int n, k;
//方向数组:   0  1 2 3 4 5 6  7
int dx[8] = { -1,-1,0,1,1,1,0,-1 };
int dy[8] = { 0,1,1,1,0,-1,-1,-1 };
string res;

void dfs(int x, int y, int prev, string s, int dep)
{
	//当搜到终点的时候,且搜索深度是n的时候,意思就是每种情况都搜索完了
	if (x == n && y == n && dep == n * n) {
		if (res.empty())res = s;
		return;
	}
	for (int i = 0;i < 8;i++)
	{
		//生成邻接点
		int bx = x + dx[i];
		int by = y + dy[i];
		//过滤越界节点
		if (bx<1 || bx>n || by<1 || by>n)continue;
		//过滤访问过的节点
		if (vis[bx][by] == true)continue;
		//防止交叉搜索
		if (i == 1 && vis[x - 1][y] && vis[x][y + 1])continue;
		if (i == 3 && vis[x + 1][y] && vis[x][y + 1])continue;
		if (i == 5 && vis[x + 1][y] && vis[x][y - 1])continue;
		if (i == 7 && vis[x - 1][y] && vis[x][y - 1])continue;
		//保证路径数值为0 1 2 3 .....k-1
		if ((a[bx][by] < k && a[bx][by] == prev + 1) || (prev + 1 == k && a[bx][by] == 0))
		{
			//可以搜索,将点标记为true
			vis[bx][by] = true;
			dfs(bx, by, a[bx][by], s + to_string(i), dep + 1);
			//最优性剪枝
			if (!res.empty())return;
			vis[bx][by] = false;//回溯
		}

	}
}

int main()
{
	cin >> n >> k;
	for (int i = 1;i <= n;i++)
		for (int j = 1;j <= n;j++)
			cin >> a[i][j];
	string emp;
	//标记起点
	vis[1][1] = true;
	dfs(1, 1, 0, emp, 1);
	if (res.empty())cout << -1;
	else cout << res << endl;
	return 0;
}

7.拔河

问题描述:

数据量:

对于这种涉及到区间和的题来说,大概率都是用前缀和算法解决

算法思路

编写代码:

代码语言:javascript
复制
#include<iostream>
#include<set>
#include<climits>
using namespace std;

#define ll long long

const int N = 1e3 + 10;
int a[N], s[N];//前缀和和数组
multiset<int> ms;


int main()
{
	int n;cin >> n;
	for (int i = 1;i <= n;i++)
	{
		cin >> a[i];
		//前缀和
		s[i] = s[i - 1] + a[i];
	}

	//用set去维护所有的区间和
	for (int i = 1;i <= n;i++)
	{
		for (int j = 1;j <= n;j++)
		{
			//维护区间和
			ms.insert(s[j] - s[i - 1]);
		}
	}

	int ans = LONG_MAX;
	for (int i = 1;i <= n;i++)
	{
		for (int j = 1;j < i;j++)
		{
			//枚举以i结尾的区间,因为这里i-1只会有一个人,所以应该是j-1
			int sum = s[i] - s[j - 1];
			//找到与该区间和sum相似的区间和
			auto it = ms.lower_bound(sum);
			if (it != ms.end())
			{
				ans = min(ans, abs(*it - sum));
			}
			if (it != ms.begin())
			{
				it--;
				ans = min(ans, abs(*it - sum));
			}
		}
		//删除以i开头且以j结尾的区间,防止后续查询区间的时候出现区间重叠/交叉问题
		for (int j = i;j <= n;j++) ms.erase(ms.find(s[j] - s[i - 1]));
	}
	cout << ans << endl;
	return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-10-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.握手问题
    • 解题思路1(组合数学)
      • 解题思路2(暴力枚举)
      • 2.小球反弹
        • 做题思路
        • 3.好数
          • 算法思路(暴力解法)—不会超时
          • 4.R格式
            • 算法思路
            • 5.宝石组合
              • 算法思路—唯一分解定理
              • 6.数字接龙
                • 算法思路----DFS
                • 7.拔河
                  • 算法思路
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档