前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >【论文复现】WRN: 宽度残差网络

【论文复现】WRN: 宽度残差网络

作者头像
Eternity._
发布2024-11-30 09:28:03
发布2024-11-30 09:28:03
9600
代码可运行
举报
文章被收录于专栏:登神长阶登神长阶
运行总次数:0
代码可运行

概述


本文复现论文 Wide Residual Networks[1] 提出的深度神经网络模型。

为了解决深度神经网络梯度消失的问题,深度残差网络(Residual Network[2])被提出。然而,仅为了提高千分之一的准确率,也要将网络的层数翻倍,这使得网络的训练变得非常缓慢。为了解决这些问题,该论文对ResNet基本块的架构进行了改进并提出了一种新颖的架构——宽度残差网络(Wide Residual Network),其减少了深度并增加了残差网络的宽度。

我基于Pytorch复现了该网络并在CIFAR-10[3]、CIFAR-100[3]和SVHN[4]数据集上进行试验。此外,我提供了一个基于SVHN数据集训练的数字识别系统用于体验。

模型结构


宽度残差网络共包含四组结构。其中,第一组固定为一个卷积神经网络,第二、三、四组都包含 n 个基本残差块。

基本残差块的结构如图所示:

与普通的残差块不同的地方在于,普通残差块中的批归一化层和激活层都放在卷积层之后,而该论文将批归一化层和激活层都放在卷积层之前,该做法一方面加快了计算,另一方面使得该网络可以不需要用于特征池化的瓶颈层。此外,宽度残差网络成倍地增加了普通残差网络的特征通道数。

宽度残差网络在第三、四组的第一个卷积层进行下采样,即设置卷积步长为2。

核心逻辑


Wide Residual Network 的模型代码如下所示:

代码语言:javascript
代码运行次数:0
复制
import torch
import torch.nn as nn
import torch.nn.functional as F


class WideBasicBlock(nn.Module):
    """Wide Residual Network的基本单元"""
    def __init__(self, in_channels, out_channels, stride, dropout):
        super(WideBasicBlock, self).__init__()
        self.stride = stride
        # 批归一化层、激活层、卷积层、Dropout层
        self.layers = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        ) 
    
    def forward(self, x):
        out = self.layers(x)
        if self.stride != 1:
            residual = F.adaptive_avg_pool2d(x, (out.size(2), out.size(3)))
        else:
            residual = x
        if out.size(1) != residual.size(1):
            # 对池化和升维的特殊处理
            if out.size(1) % residual.size(1) == 0:
                residual = residual.repeat(1, out.size(1) // residual.size(1), 1, 1)
            else:
                padding = torch.zeros(residual.size(0), out.size(1) - residual.size(1), residual.size(2), residual.size(3)).to(residual.device)
                residual = torch.cat((residual, padding), dim=1)
        out = out + residual
        return out
        
        
    
class WideResidualNetwork(nn.Module):
    """Wide Residual Network"""
    def __init__(self, in_channels, out_channels, depth, width, dropout=0):
        super(WideResidualNetwork, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv2 = self.add_block(
            in_channels = 16,
            out_channels = 16 * width,
            depth = depth,
            stride = 1,
            dropout = dropout
        )
        self.conv3 = self.add_block(
            in_channels = 16 * width,
            out_channels = 32 * width,
            depth = depth,
            stride = 2,
            dropout = dropout
        )
        self.conv4 = self.add_block(
            in_channels = 32 * width,
            out_channels = 64 * width,
            depth = depth,
            stride = 2,
            dropout = dropout
        )
        self.linear = nn.Linear(64 * width, out_channels)
        
    def add_block(self, in_channels, out_channels, depth, stride, dropout):
        """添加一个基本单元的组合"""
        layers = nn.Sequential()
        layers.add_module(
            name = '0',
            module = WideBasicBlock(
                in_channels = in_channels, 
                out_channels = out_channels, 
                stride = stride,
                dropout = dropout
            )
        )
        for i in range(1, depth):
            layers.add_module(
                name = str(i),
                module = WideBasicBlock(
                    in_channels = out_channels, 
                    out_channels = out_channels, 
                    stride = 1,
                    dropout = dropout
                )
            )
        return layers
        
    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.conv3(out)
        out = self.conv4(out)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out = torch.flatten(out, 1)
        out = self.linear(out)
        return out

以上代码仅作展示,更详细的代码文件请参见附件。

实验


训练与测试


所有实验基于WRN-37-2进行且使用SGD进行优化。对于CIFAR-10和CIFAR-100,学习率为0.01并在第60、120、160轮衰减到20%,dropout采用0.3,weight_decay和momentum分别为0.0005和0.9。对于SVHN,学习率为0.01并在第80、120轮衰减到10%,dropout为0,weight_decay和momentum分别为0.0005和0.9。三个数据集的batch size均为128。

此外,CIFAR-10和CIFAR-100使用了数据增强操作,具体为随机水平翻转和随机裁剪。

具体的实验结果如下表所示:

数据集

准确率

CIFAR-10

94.16%

CIFAR-100

74.12%

SVHN

96.95%

在线部署


我从网络上随机截取了10张大小、颜色、形状、背景各异的数字图像。这些图片的来源包括:车牌(6、8、9)、扑克牌(3)、广告(1、2、4、5、7)、腰带卡扣(0)。测试结果显示正确率为100%。

使用方式


解压附件压缩包并进入工作目录。如果是Linux系统,请使用如下命令:

网站提供了在线部署功能,如若使用请输入一张小于1MB、单个数字为主体的JPG图像。

使用方式


解压附件压缩包并进入工作目录。如果是Linux系统,请使用如下命令:

代码语言:javascript
代码运行次数:0
复制
unzip Wide-Residual-Networks.zip
cd Wide-Residual-Networks

代码的运行环境可通过如下命令进行配置:

代码语言:javascript
代码运行次数:0
复制
pip install -r requirements.txt

如果希望在本地训练模型,请运行如下命令:

代码语言:javascript
代码运行次数:0
复制
python main.py -d ['CIFAR-10' 、'CIFAR-100'、 'SVHN'三者其中之一]

如果希望在线部署,请运行如下命令:

代码语言:javascript
代码运行次数:0
复制
python main-flask.py

参考文献


[1] Zagoruyko S, Komodakis N. Wide residual networks[J]. arXiv preprint arXiv:1605.07146, 2016.

[2] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

[3] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images[J]. 2009.

[4] Netzer Y, Wang T, Coates A, et al. Reading digits in natural images with unsupervised feature learning[C]//NIPS workshop on deep learning and unsupervised feature learning. 2011, 2011(5): 7.


编程未来,从这里启航!解锁无限创意,让每一行代码都成为你通往成功的阶梯,帮助更多人欣赏与学习!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-11-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
  • 模型结构
  • 核心逻辑
  • 实验
    • 训练与测试
  • 在线部署
  • 使用方式
  • 使用方式
  • 参考文献
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档