首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >第十章:高级特性与性能优化

第十章:高级特性与性能优化

作者头像
javpower
发布2025-08-06 17:34:01
发布2025-08-06 17:34:01
1780
举报

第十章:高级特性与性能优化

10.1 内存优化技术

10.1.1 对象池设计

对象池是减少频繁对象创建和垃圾回收开销的重要技术,特别适用于高频使用的对象。

代码语言:javascript
复制
package com.jvector.optimization.memory;

import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;

/**
 * 通用对象池实现
 */
public class ObjectPool<T> {
    private final ConcurrentLinkedQueue<T> pool;
    private final Supplier<T> objectFactory;
    private final int maxSize;
    private final AtomicInteger currentSize;
    
    public ObjectPool(Supplier<T> objectFactory, int maxSize) {
        this.objectFactory = objectFactory;
        this.maxSize = maxSize;
        this.pool = new ConcurrentLinkedQueue<>();
        this.currentSize = new AtomicInteger(0);
        
        // 预热池
        warmupPool();
    }
    
    /**
     * 从池中获取对象
     */
    public T acquire() {
        T object = pool.poll();
        if (object == null) {
            object = objectFactory.get();
        } else {
            currentSize.decrementAndGet();
        }
        return object;
    }
    
    /**
     * 归还对象到池中
     */
    public void release(T object) {
        if (object != null && currentSize.get() < maxSize) {
            // 重置对象状态(如果需要)
            resetObject(object);
            
            if (pool.offer(object)) {
                currentSize.incrementAndGet();
            }
        }
    }
    
    /**
     * 预热对象池
     */
    private void warmupPool() {
        int initialSize = Math.min(maxSize / 4, 10);
        for (int i = 0; i < initialSize; i++) {
            pool.offer(objectFactory.get());
            currentSize.incrementAndGet();
        }
    }
    
    /**
     * 重置对象状态
     */
    private void resetObject(T object) {
        // 具体的重置逻辑由子类或配置决定
        if (object instanceof Resetable) {
            ((Resetable) object).reset();
        }
    }
    
    /**
     * 获取池状态
     */
    public PoolStats getStats() {
        return new PoolStats(currentSize.get(), maxSize, pool.size());
    }
}

/**
 * 可重置接口
 */
public interface Resetable {
    void reset();
}

/**
 * 向量对象池
 */
public class VectorPool extends ObjectPool<float[]> {
    private final int vectorDimension;
    
    public VectorPool(int vectorDimension, int maxSize) {
        super(() -> new float[vectorDimension], maxSize);
        this.vectorDimension = vectorDimension;
    }
    
    @Override
    public void release(float[] vector) {
        if (vector != null && vector.length == vectorDimension) {
            // 清零向量数据
            Arrays.fill(vector, 0.0f);
            super.release(vector);
        }
    }
}

/**
 * 搜索结果对象池
 */
public class SearchResultPool extends ObjectPool<List<SearchResult>> {
    
    public SearchResultPool(int maxSize) {
        super(ArrayList::new, maxSize);
    }
    
    @Override
    public void release(List<SearchResult> results) {
        if (results != null) {
            results.clear();
            super.release(results);
        }
    }
}

10.1.2 缓存策略

代码语言:javascript
复制
/**
 * 多级缓存管理器
 */
public class MultiLevelCacheManager {
    private static final Logger logger = LoggerFactory.getLogger(MultiLevelCacheManager.class);
    
    private final Map<String, Cache<?, ?>> caches = new ConcurrentHashMap<>();
    private final CacheConfig config;
    private final CacheMetrics metrics;
    
    public MultiLevelCacheManager(CacheConfig config) {
        this.config = config;
        this.metrics = new CacheMetrics();
        initializeCaches();
    }
    
    /**
     * 初始化各级缓存
     */
    private void initializeCaches() {
        // L1缓存:查询结果缓存
        Cache<String, List<SearchResult>> queryCache = Caffeine.newBuilder()
            .maximumSize(config.getQueryCacheSize())
            .expireAfterWrite(config.getQueryCacheTtl())
            .removalListener(this::onQueryCacheRemoval)
            .recordStats()
            .build();
        caches.put("query", queryCache);
        
        // L2缓存:向量数据缓存
        Cache<Long, Vector> vectorCache = Caffeine.newBuilder()
            .maximumSize(config.getVectorCacheSize())
            .expireAfterAccess(config.getVectorCacheTtl())
            .weigher(this::calculateVectorWeight)
            .recordStats()
            .build();
        caches.put("vector", vectorCache);
        
        // L3缓存:距离计算结果缓存
        Cache<String, Float> distanceCache = Caffeine.newBuilder()
            .maximumSize(config.getDistanceCacheSize())
            .expireAfterWrite(Duration.ofMinutes(30))
            .recordStats()
            .build();
        caches.put("distance", distanceCache);
    }
    
    /**
     * 获取查询缓存
     */
    @SuppressWarnings("unchecked")
    public Cache<String, List<SearchResult>> getQueryCache() {
        return (Cache<String, List<SearchResult>>) caches.get("query");
    }
    
    /**
     * 获取向量缓存
     */
    @SuppressWarnings("unchecked")
    public Cache<Long, Vector> getVectorCache() {
        return (Cache<Long, Vector>) caches.get("vector");
    }
    
    /**
     * 计算向量权重(用于缓存大小限制)
     */
    private int calculateVectorWeight(Long id, Vector vector) {
        return 8 + vector.getDimension() * 4; // ID + 向量数据
    }
    
    /**
     * 查询缓存移除监听器
     */
    private void onQueryCacheRemoval(String key, List<SearchResult> value, RemovalCause cause) {
        metrics.recordCacheRemoval("query", cause);
        logger.debug("Query cache removal: key={}, cause={}", key, cause);
    }
    
    /**
     * 预热缓存
     */
    public void warmupCaches(HnswIndex index) {
        logger.info("Warming up caches...");
        
        // 预热向量缓存 - 加载热点数据
        warmupVectorCache(index);
        
        // 预热距离缓存 - 预计算常用距离
        warmupDistanceCache(index);
        
        logger.info("Cache warmup completed");
    }
    
    /**
     * 预热向量缓存
     */
    private void warmupVectorCache(HnswIndex index) {
        Cache<Long, Vector> vectorCache = getVectorCache();
        
        // 加载最近访问的向量
        Collection<Long> recentIds = index.getRecentlyAccessedIds(1000);
        for (Long id : recentIds) {
            Vector vector = index.getVector(id);
            if (vector != null) {
                vectorCache.put(id, vector);
            }
        }
    }
    
    /**
     * 获取缓存统计信息
     */
    public Map<String, CacheStats> getCacheStats() {
        Map<String, CacheStats> stats = new HashMap<>();
        
        for (Map.Entry<String, Cache<?, ?>> entry : caches.entrySet()) {
            stats.put(entry.getKey(), entry.getValue().stats());
        }
        
        return stats;
    }
    
    /**
     * 清理所有缓存
     */
    public void clearAllCaches() {
        caches.values().forEach(Cache::invalidateAll);
        logger.info("All caches cleared");
    }
}

/**
 * 缓存配置
 */
public class CacheConfig {
    private long queryCacheSize = 10000;
    private Duration queryCacheTtl = Duration.ofMinutes(10);
    private long vectorCacheSize = 100000;
    private Duration vectorCacheTtl = Duration.ofHours(1);
    private long distanceCacheSize = 1000000;
    
    // Getters and setters
    public long getQueryCacheSize() { return queryCacheSize; }
    public Duration getQueryCacheTtl() { return queryCacheTtl; }
    public long getVectorCacheSize() { return vectorCacheSize; }
    public Duration getVectorCacheTtl() { return vectorCacheTtl; }
    public long getDistanceCacheSize() { return distanceCacheSize; }
}

10.1.3 内存泄漏检测

代码语言:javascript
复制
/**
 * 内存泄漏检测器
 */
public class MemoryLeakDetector {
    private static final Logger logger = LoggerFactory.getLogger(MemoryLeakDetector.class);
    
    private final MemoryMXBean memoryBean;
    private final ScheduledExecutorService scheduler;
    private final Map<String, ReferenceQueue<Object>> referenceQueues;
    private final Set<WeakReference<Object>> trackedReferences;
    
    public MemoryLeakDetector() {
        this.memoryBean = ManagementFactory.getMemoryMXBean();
        this.scheduler = Executors.newSingleThreadScheduledExecutor();
        this.referenceQueues = new ConcurrentHashMap<>();
        this.trackedReferences = ConcurrentHashMap.newKeySet();
        
        startMonitoring();
    }
    
    /**
     * 开始内存监控
     */
    private void startMonitoring() {
        // 定期检查内存使用情况
        scheduler.scheduleWithFixedDelay(this::checkMemoryUsage, 30, 30, TimeUnit.SECONDS);
        
        // 定期检查引用队列
        scheduler.scheduleWithFixedDelay(this::checkReferenceQueues, 10, 10, TimeUnit.SECONDS);
        
        // 定期触发GC建议
        scheduler.scheduleWithFixedDelay(this::suggestGC, 300, 300, TimeUnit.SECONDS);
    }
    
    /**
     * 检查内存使用情况
     */
    private void checkMemoryUsage() {
        MemoryUsage heapUsage = memoryBean.getHeapMemoryUsage();
        long used = heapUsage.getUsed();
        long max = heapUsage.getMax();
        
        double usagePercentage = (double) used / max * 100;
        
        if (usagePercentage > 80) {
            logger.warn("High memory usage detected: {:.2f}% ({} / {} bytes)", 
                       usagePercentage, used, max);
            
            // 检查是否有潜在内存泄漏
            checkForMemoryLeaks();
        }
        
        // 记录内存使用指标
        recordMemoryMetrics(used, max, usagePercentage);
    }
    
    /**
     * 检查潜在内存泄漏
     */
    private void checkForMemoryLeaks() {
        // 分析堆转储(如果启用)
        if (shouldAnalyzeHeapDump()) {
            analyzeHeapDump();
        }
        
        // 检查对象引用计数
        checkObjectReferenceCounts();
        
        // 检查长期存在的对象
        checkLongLivedObjects();
    }
    
    /**
     * 跟踪对象引用
     */
    public void trackObject(Object object, String category) {
        ReferenceQueue<Object> queue = referenceQueues.computeIfAbsent(
            category, k -> new ReferenceQueue<>());
        
        WeakReference<Object> ref = new WeakReference<>(object, queue);
        trackedReferences.add(ref);
    }
    
    /**
     * 检查引用队列
     */
    private void checkReferenceQueues() {
        for (Map.Entry<String, ReferenceQueue<Object>> entry : referenceQueues.entrySet()) {
            String category = entry.getKey();
            ReferenceQueue<Object> queue = entry.getValue();
            
            Reference<?> ref;
            int collectedCount = 0;
            while ((ref = queue.poll()) != null) {
                trackedReferences.remove(ref);
                collectedCount++;
            }
            
            if (collectedCount > 0) {
                logger.debug("Collected {} references from category: {}", collectedCount, category);
            }
        }
    }
    
    /**
     * 建议垃圾回收
     */
    private void suggestGC() {
        MemoryUsage beforeGC = memoryBean.getHeapMemoryUsage();
        
        // 建议进行垃圾回收
        System.gc();
        
        // 等待GC完成
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        }
        
        MemoryUsage afterGC = memoryBean.getHeapMemoryUsage();
        
        long freedMemory = beforeGC.getUsed() - afterGC.getUsed();
        if (freedMemory > 0) {
            logger.info("GC freed {} bytes of memory", freedMemory);
        }
    }
    
    /**
     * 分析堆转储
     */
    private void analyzeHeapDump() {
        try {
            // 生成堆转储文件
            String dumpFile = generateHeapDump();
            
            // 分析堆转储(简化实现)
            analyzeHeapDumpFile(dumpFile);
            
        } catch (Exception e) {
            logger.error("Failed to analyze heap dump", e);
        }
    }
    
    /**
     * 生成堆转储
     */
    private String generateHeapDump() throws Exception {
        MBeanServer server = ManagementFactory.getPlatformMBeanServer();
        HotSpotDiagnosticMXBean diagBean = ManagementFactory.newPlatformMXBeanProxy(
            server, "com.sun.management:type=HotSpotDiagnostic", HotSpotDiagnosticMXBean.class);
        
        String fileName = "heapdump_" + System.currentTimeMillis() + ".hprof";
        diagBean.dumpHeap(fileName, true);
        
        return fileName;
    }
    
    /**
     * 记录内存指标
     */
    private void recordMemoryMetrics(long used, long max, double percentage) {
        // 发送到监控系统
        MetricsCollector.getInstance().recordGauge("memory.heap.used", used);
        MetricsCollector.getInstance().recordGauge("memory.heap.max", max);
        MetricsCollector.getInstance().recordGauge("memory.heap.usage_percentage", percentage);
    }
    
    /**
     * 获取内存泄漏报告
     */
    public MemoryLeakReport getLeakReport() {
        return MemoryLeakReport.builder()
            .trackedReferences(trackedReferences.size())
            .referenceQueues(referenceQueues.size())
            .memoryUsage(memoryBean.getHeapMemoryUsage())
            .suspiciousObjects(findSuspiciousObjects())
            .build();
    }
    
    /**
     * 查找可疑对象
     */
    private List<SuspiciousObject> findSuspiciousObjects() {
        // 实现对象泄漏检测逻辑
        return Collections.emptyList(); // 简化实现
    }
}

10.2 搜索性能优化

10.2.1 查询缓存优化

代码语言:javascript
复制
/**
 * 智能查询缓存
 */
public class IntelligentQueryCache {
    private static final Logger logger = LoggerFactory.getLogger(IntelligentQueryCache.class);
    
    private final Cache<String, CachedSearchResult> cache;
    private final QuerySimilarityCalculator similarityCalculator;
    private final CacheHitPredictor hitPredictor;
    
    public IntelligentQueryCache(CacheConfig config) {
        this.cache = Caffeine.newBuilder()
            .maximumSize(config.getMaxSize())
            .expireAfterWrite(config.getTtl())
            .removalListener(this::onRemoval)
            .recordStats()
            .build();
        
        this.similarityCalculator = new QuerySimilarityCalculator();
        this.hitPredictor = new CacheHitPredictor();
    }
    
    /**
     * 获取搜索结果(智能缓存)
     */
    public Optional<List<SearchResult>> get(Vector query, int k, SearchOptions options) {
        String queryKey = generateQueryKey(query, k, options);
        
        // 直接缓存命中
        CachedSearchResult cachedResult = cache.getIfPresent(queryKey);
        if (cachedResult != null) {
            return Optional.of(cachedResult.getResults());
        }
        
        // 查找相似查询
        Optional<CachedSearchResult> similarResult = findSimilarQuery(query, k, options);
        if (similarResult.isPresent()) {
            CachedSearchResult similar = similarResult.get();
            
            // 调整相似查询的结果
            List<SearchResult> adjustedResults = adjustSimilarResults(
                similar.getResults(), query, similar.getQuery());
            
            // 缓存调整后的结果
            cache.put(queryKey, new CachedSearchResult(query, adjustedResults, System.currentTimeMillis()));
            
            return Optional.of(adjustedResults);
        }
        
        return Optional.empty();
    }
    
    /**
     * 缓存搜索结果
     */
    public void put(Vector query, int k, SearchOptions options, List<SearchResult> results) {
        String queryKey = generateQueryKey(query, k, options);
        
        // 预测缓存命中率
        double predictedHitRate = hitPredictor.predict(query, k, options);
        
        // 只缓存高命中率预期的查询
        if (predictedHitRate > 0.1) { // 10%以上命中率
            CachedSearchResult cachedResult = new CachedSearchResult(
                query, new ArrayList<>(results), System.currentTimeMillis());
            cache.put(queryKey, cachedResult);
        }
    }
    
    /**
     * 查找相似查询
     */
    private Optional<CachedSearchResult> findSimilarQuery(Vector query, int k, SearchOptions options) {
        double maxSimilarity = 0.0;
        CachedSearchResult mostSimilar = null;
        
        for (CachedSearchResult cached : cache.asMap().values()) {
            double similarity = similarityCalculator.calculate(query, cached.getQuery());
            
            if (similarity > 0.95 && similarity > maxSimilarity) { // 95%以上相似度
                maxSimilarity = similarity;
                mostSimilar = cached;
            }
        }
        
        return Optional.ofNullable(mostSimilar);
    }
    
    /**
     * 调整相似查询的结果
     */
    private List<SearchResult> adjustSimilarResults(List<SearchResult> originalResults,
                                                   Vector newQuery, Vector originalQuery) {
        // 重新计算距离并排序
        return originalResults.stream()
            .map(result -> new SearchResult(
                result.getId(),
                calculateDistance(newQuery, result.getVector()),
                result.getVector()
            ))
            .sorted(Comparator.comparing(SearchResult::getDistance))
            .collect(Collectors.toList());
    }
    
    /**
     * 缓存移除监听器
     */
    private void onRemoval(String key, CachedSearchResult value, RemovalCause cause) {
        logger.debug("Cache entry removed: key={}, cause={}", key, cause);
        
        // 更新命中率预测模型
        hitPredictor.updateModel(value, cause);
    }
}

/**
 * 缓存的搜索结果
 */
public class CachedSearchResult {
    private final Vector query;
    private final List<SearchResult> results;
    private final long timestamp;
    private volatile int hitCount = 0;
    
    public CachedSearchResult(Vector query, List<SearchResult> results, long timestamp) {
        this.query = query;
        this.results = results;
        this.timestamp = timestamp;
    }
    
    public void recordHit() {
        hitCount++;
    }
    
    // Getters
    public Vector getQuery() { return query; }
    public List<SearchResult> getResults() { return results; }
    public long getTimestamp() { return timestamp; }
    public int getHitCount() { return hitCount; }
}

10.2.2 预计算优化

代码语言:javascript
复制
/**
 * 预计算管理器
 */
public class PrecomputationManager {
    private static final Logger logger = LoggerFactory.getLogger(PrecomputationManager.class);
    
    private final HnswIndex index;
    private final ScheduledExecutorService scheduler;
    private final Map<String, PrecomputedData> precomputedCache;
    private final PrecomputationStrategy strategy;
    
    public PrecomputationManager(HnswIndex index, PrecomputationStrategy strategy) {
        this.index = index;
        this.strategy = strategy;
        this.scheduler = Executors.newScheduledThreadPool(2);
        this.precomputedCache = new ConcurrentHashMap<>();
        
        startPrecomputation();
    }
    
    /**
     * 开始预计算任务
     */
    private void startPrecomputation() {
        // 定期预计算热点数据
        scheduler.scheduleWithFixedDelay(
            this::precomputeHotData, 
            0, 60, TimeUnit.MINUTES
        );
        
        // 预计算中心点
        scheduler.scheduleWithFixedDelay(
            this::precomputeCentroids, 
            5, 120, TimeUnit.MINUTES
        );
    }
    
    /**
     * 预计算热点数据
     */
    private void precomputeHotData() {
        logger.info("Starting hot data precomputation...");
        
        try {
            // 获取热点查询模式
            List<QueryPattern> hotPatterns = strategy.getHotQueryPatterns();
            
            for (QueryPattern pattern : hotPatterns) {
                precomputePattern(pattern);
            }
            
            logger.info("Hot data precomputation completed, processed {} patterns", hotPatterns.size());
            
        } catch (Exception e) {
            logger.error("Failed to precompute hot data", e);
        }
    }
    
    /**
     * 预计算查询模式
     */
    private void precomputePattern(QueryPattern pattern) {
        String patternKey = pattern.getKey();
        
        // 检查是否已经预计算
        if (precomputedCache.containsKey(patternKey)) {
            return;
        }
        
        // 生成代表性查询向量
        Vector representativeQuery = pattern.generateRepresentativeQuery();
        
        // 执行搜索并缓存结果
        List<SearchResult> results = index.search(
            representativeQuery, 
            pattern.getK(), 
            pattern.getSearchOptions()
        );
        
        // 缓存预计算结果
        PrecomputedData data = new PrecomputedData(
            representativeQuery, results, System.currentTimeMillis());
        precomputedCache.put(patternKey, data);
        
        logger.debug("Precomputed pattern: {}", patternKey);
    }
    
    /**
     * 预计算质心
     */
    private void precomputeCentroids() {
        logger.info("Starting centroid precomputation...");
        
        try {
            // 聚类分析
            ClusterAnalyzer analyzer = new ClusterAnalyzer(index);
            List<VectorCluster> clusters = analyzer.analyzeClusters(100); // 分100个簇
            
            // 预计算每个簇的质心和最近邻
            for (VectorCluster cluster : clusters) {
                precomputeClusterData(cluster);
            }
            
            logger.info("Centroid precomputation completed, processed {} clusters", clusters.size());
            
        } catch (Exception e) {
            logger.error("Failed to precompute centroids", e);
        }
    }
    
    /**
     * 预计算簇数据
     */
    private void precomputeClusterData(VectorCluster cluster) {
        Vector centroid = cluster.getCentroid();
        String clusterKey = "cluster_" + cluster.getId();
        
        // 预计算质心的最近邻
        List<SearchResult> nearestToCenter = index.search(centroid, 50);
        
        // 缓存簇数据
        ClusterData clusterData = new ClusterData(
            cluster.getId(), centroid, nearestToCenter, cluster.getMembers());
        precomputedCache.put(clusterKey, clusterData);
    }
    
    /**
     * 获取预计算结果
     */
    public Optional<List<SearchResult>> getPrecomputedResults(Vector query, int k, SearchOptions options) {
        // 查找最匹配的预计算数据
        PrecomputedData bestMatch = findBestMatch(query, k, options);
        
        if (bestMatch != null) {
            // 基于预计算结果进行调整
            return Optional.of(adjustPrecomputedResults(bestMatch, query, k));
        }
        
        return Optional.empty();
    }
    
    /**
     * 查找最佳匹配的预计算数据
     */
    private PrecomputedData findBestMatch(Vector query, int k, SearchOptions options) {
        double bestSimilarity = 0.0;
        PrecomputedData bestMatch = null;
        
        for (PrecomputedData data : precomputedCache.values()) {
            if (data instanceof ClusterData) {
                ClusterData clusterData = (ClusterData) data;
                double similarity = calculateSimilarity(query, clusterData.getCentroid());
                
                if (similarity > 0.8 && similarity > bestSimilarity) {
                    bestSimilarity = similarity;
                    bestMatch = data;
                }
            }
        }
        
        return bestMatch;
    }
    
    /**
     * 调整预计算结果
     */
    private List<SearchResult> adjustPrecomputedResults(PrecomputedData precomputed, 
                                                       Vector query, int k) {
        // 重新计算距离并选择前k个
        return precomputed.getResults().stream()
            .map(result -> new SearchResult(
                result.getId(),
                calculateDistance(query, result.getVector()),
                result.getVector()
            ))
            .sorted(Comparator.comparing(SearchResult::getDistance))
            .limit(k)
            .collect(Collectors.toList());
    }
}

10.2.3 索引预热

代码语言:javascript
复制
/**
 * 索引预热管理器
 */
public class IndexWarmupManager {
    private static final Logger logger = LoggerFactory.getLogger(IndexWarmupManager.class);
    
    private final HnswIndex index;
    private final WarmupStrategy strategy;
    private final ExecutorService warmupExecutor;
    
    public IndexWarmupManager(HnswIndex index, WarmupStrategy strategy) {
        this.index = index;
        this.strategy = strategy;
        this.warmupExecutor = Executors.newFixedThreadPool(
            Runtime.getRuntime().availableProcessors());
    }
    
    /**
     * 执行完整的索引预热
     */
    public void warmupIndex() {
        logger.info("Starting index warmup...");
        long startTime = System.currentTimeMillis();
        
        List<CompletableFuture<Void>> warmupTasks = Arrays.asList(
            CompletableFuture.runAsync(this::warmupConnections, warmupExecutor),
            CompletableFuture.runAsync(this::warmupVectorData, warmupExecutor),
            CompletableFuture.runAsync(this::warmupDistanceCalculations, warmupExecutor),
            CompletableFuture.runAsync(this::warmupCaches, warmupExecutor)
        );
        
        // 等待所有预热任务完成
        CompletableFuture.allOf(warmupTasks.toArray(new CompletableFuture[0]))
            .join();
        
        long duration = System.currentTimeMillis() - startTime;
        logger.info("Index warmup completed in {} ms", duration);
    }
    
    /**
     * 预热连接数据
     */
    private void warmupConnections() {
        logger.debug("Warming up connections...");
        
        Collection<HnswNode> nodes = index.getAllNodes();
        int accessCount = 0;
        
        for (HnswNode node : nodes) {
            // 访问节点的连接数据,触发缓存加载
            for (int level = 0; level <= node.getLevel(); level++) {
                Set<Long> connections = node.getConnections(level);
                accessCount += connections.size();
            }
        }
        
        logger.debug("Warmed up {} connections", accessCount);
    }
    
    /**
     * 预热向量数据
     */
    private void warmupVectorData() {
        logger.debug("Warming up vector data...");
        
        Collection<HnswNode> nodes = index.getAllNodes();
        int vectorCount = 0;
        
        for (HnswNode node : nodes) {
            // 访问向量数据,触发缓存加载
            Vector vector = node.getVector();
            float[] data = vector.getData();
            
            // 简单的内存访问以确保数据在缓存中
            @SuppressWarnings("unused")
            float sum = data[0] + data[data.length - 1];
            vectorCount++;
        }
        
        logger.debug("Warmed up {} vectors", vectorCount);
    }
    
    /**
     * 预热距离计算
     */
    private void warmupDistanceCalculations() {
        logger.debug("Warming up distance calculations...");
        
        List<Vector> sampleVectors = strategy.getSampleVectors(100);
        DistanceMetric metric = index.getDistanceMetric();
        
        // 执行一些距离计算来预热JIT编译
        for (int i = 0; i < sampleVectors.size(); i++) {
            for (int j = i + 1; j < Math.min(i + 10, sampleVectors.size()); j++) {
                metric.distance(
                    sampleVectors.get(i).getData(),
                    sampleVectors.get(j).getData()
                );
            }
        }
        
        logger.debug("Completed distance calculation warmup");
    }
    
    /**
     * 预热缓存
     */
    private void warmupCaches() {
        logger.debug("Warming up caches...");
        
        // 预热查询缓存
        List<Vector> queryVectors = strategy.getSampleQueries(50);
        for (Vector query : queryVectors) {
            index.search(query, 10); // 执行小规模搜索预热缓存
        }
        
        logger.debug("Cache warmup completed");
    }
    
    /**
     * 渐进式预热
     */
    public void progressiveWarmup() {
        logger.info("Starting progressive warmup...");
        
        // 分阶段预热,避免系统负载过高
        warmupPhase("Connections", this::warmupConnections, 30);
        warmupPhase("Vector Data", this::warmupVectorData, 45);
        warmupPhase("Distance Calculations", this::warmupDistanceCalculations, 15);
        warmupPhase("Caches", this::warmupCaches, 10);
        
        logger.info("Progressive warmup completed");
    }
    
    /**
     * 执行预热阶段
     */
    private void warmupPhase(String phaseName, Runnable warmupTask, long maxDurationSeconds) {
        logger.debug("Starting warmup phase: {}", phaseName);
        long startTime = System.currentTimeMillis();
        
        Future<?> task = warmupExecutor.submit(warmupTask);
        
        try {
            task.get(maxDurationSeconds, TimeUnit.SECONDS);
            long duration = System.currentTimeMillis() - startTime;
            logger.debug("Warmup phase '{}' completed in {} ms", phaseName, duration);
        } catch (TimeoutException e) {
            logger.warn("Warmup phase '{}' timed out after {} seconds", phaseName, maxDurationSeconds);
            task.cancel(true);
        } catch (Exception e) {
            logger.error("Warmup phase '{}' failed", phaseName, e);
        }
    }
}

/**
 * 预热策略接口
 */
public interface WarmupStrategy {
    List<Vector> getSampleVectors(int count);
    List<Vector> getSampleQueries(int count);
    List<QueryPattern> getHotQueryPatterns();
}

/**
 * 默认预热策略
 */
public class DefaultWarmupStrategy implements WarmupStrategy {
    private final HnswIndex index;
    private final Random random = new Random(42);
    
    public DefaultWarmupStrategy(HnswIndex index) {
        this.index = index;
    }
    
    @Override
    public List<Vector> getSampleVectors(int count) {
        Collection<HnswNode> allNodes = index.getAllNodes();
        List<HnswNode> nodeList = new ArrayList<>(allNodes);
        
        return nodeList.stream()
            .limit(count)
            .map(HnswNode::getVector)
            .collect(Collectors.toList());
    }
    
    @Override
    public List<Vector> getSampleQueries(int count) {
        // 生成基于现有向量的查询
        List<Vector> sampleVectors = getSampleVectors(count);
        
        return sampleVectors.stream()
            .map(this::addNoise) // 添加噪声生成查询向量
            .collect(Collectors.toList());
    }
    
    /**
     * 添加噪声生成查询向量
     */
    private Vector addNoise(Vector original) {
        float[] originalData = original.getData();
        float[] noisyData = new float[originalData.length];
        
        for (int i = 0; i < originalData.length; i++) {
            float noise = (random.nextFloat() - 0.5f) * 0.1f; // 10%噪声
            noisyData[i] = originalData[i] + noise;
        }
        
        return new Vector(noisyData);
    }
    
    @Override
    public List<QueryPattern> getHotQueryPatterns() {
        // 返回常见的查询模式
        return Arrays.asList(
            new QueryPattern("small_k", 10, SearchOptions.defaultOptions()),
            new QueryPattern("medium_k", 50, SearchOptions.defaultOptions()),
            new QueryPattern("large_k", 100, SearchOptions.defaultOptions())
        );
    }
}

小结

本章介绍了向量搜索引擎的高级特性与性能优化技术:

  1. 内存优化
    • 对象池减少创建开销
    • 多级缓存策略
    • 内存泄漏检测机制
  2. 搜索优化
    • 智能查询缓存
    • 预计算管理
    • 索引预热策略
  3. 性能监控
    • 内存使用监控
    • 缓存命中率跟踪
    • 性能指标收集

这些优化技术能够显著提升向量搜索引擎的性能和稳定性,为生产环境提供可靠的保障。


思考题:

  1. 如何设计一个自适应的缓存策略,根据查询模式动态调整缓存大小?
  2. 在什么情况下预计算会带来负面效果,应该如何避免?
  3. 如何平衡内存使用和搜索性能之间的关系?
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder建设 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 第十章:高级特性与性能优化
    • 10.1 内存优化技术
      • 10.1.1 对象池设计
      • 10.1.2 缓存策略
      • 10.1.3 内存泄漏检测
    • 10.2 搜索性能优化
      • 10.2.1 查询缓存优化
      • 10.2.2 预计算优化
      • 10.2.3 索引预热
    • 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档