对建筑行业的股价进行分析预测 一、建筑行业规模 二、建筑行业市值前六公司 中国建筑 - 601668.SH 中国交建 - 601800.SH 中国中铁 - 601390.SH 中国铁建 - 601186....SH 中国中冶 - 601618.SH 中国电建 - 601669.SH 三、建模计算分析 对中国电建 - 601669.SH 进行预测 0.71 可以预测第二天的方向超过71%的时间。...0.50 只有50%的准确率 可能是在不同时期之间的不稳定造成的,这导致学习神经网络,很适合现在的条件训练数据,但不适合在不同条件下测试数据。...也有可能是神经网络是适合噪声而没有体现出真正的信号,很难讲。 看看平稳性
为了识别样品中存在哪些分子,可以根据小分子数据库中的数百万个分子结构搜索从样品中收集的质谱。现有的方法是基于化学领域的知识,它们无法解释小分子质谱中的许多峰。...研究人员提出了 molDiscovery,是一种质谱数据库搜索方法,通过学习概率模型来将小分子与其质谱相匹配,从而提高小分子识别的效率和准确性。 ?...Mohimani 解释说,例如,科学家在海洋或土壤样本中检测到一种有望作为潜在药物的分子后,可能需要一年或更长时间才能识别该分子,但不能保证该物质是新的。...MolDiscovery 使用质谱测量和预测性机器学习模型来快速准确地识别分子。 质谱测量是分子的指纹,但没有数据库可以匹配它们。尽管已经发现了数十万种天然分子,但科学家们无法获得他们的质谱数据。...MolDiscovery 从质谱数据中预测分子的身份,而无需依赖质谱数据库进行匹配。 该团队希望 MolDiscovery 将成为实验室发现新型天然产物的有用工具。 ?
在 LeNet5的深入解析 我们已经对 LetNet-5 网络结构做出了详细的描述,接下来我们将深入分析 Caffe 中怎么使用 LetNet-5 的这个模型进行预测。...的安装 接着看看在 Caffe 中怎么用 LetNet-5 进行训练和测试,整个流程如下:(先cd到 Caffe 的根目录下) 1)下载 minist 数据的命令: $ cd data/mnist...不然报错 5) 现在我们有了训练数据、网络模型、指定了相关训练参数,可以开始训练网络 LetNet-5 了,使用下面的命令: $..../build/tools/caffe train -solver=examples/mnist/lenet_solver.prototxt 6)使用训练好的模型对数据进行预测,运行下面的代码:.../build/tools/caffe.bin test,表示只做预测(前向传播计算),不进行参数更新(后向传播计算) -model examples/mnist/lenet_train_test.prototxt
来源:DeepHub IMBA本文约3800字,建议阅读10分钟本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。 使用 LSTM 进行端到端时间序列预测的完整代码和详细解释。...在现实世界的案例中,我们主要有两种类型的时间序列分析: 单变量时间序列 多元时间序列 对于单变量时间序列数据,我们将使用单列进行预测。...所以当电影中发生任何情况时,你都已经知道之前发生了什么,并且可以理解因为过去发生的事情所以才会有新的情况发生。RNN也是以同样的方式工作,它们记住过去的信息并使用它来处理当前的输入。...现在让我们预测未来的 30 个值。 在多元时间序列预测中,需要通过使用不同的特征来预测单列,所以在进行预测时我们需要使用特征值(目标列除外)来进行即将到来的预测。...要进行预测必须再次使用 for 循环,我们在拆分 trainX 和 trainY 中的数据时所做的。但是这次我们只有 X,没有 Y 值。
时间序列预测是一个经久不衰的主题,受自然语言处理领域的成功启发,transformer模型也在时间序列预测有了很大的发展。本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。...数据集 这里我们直接使用kaggle中的 Store Sales — Time Series Forecasting作为数据。...窗口大小是一个重要的超参数,表示每个训练样本的序列长度。此外,' num_val '表示使用的验证折数,在此上下文中设置为2。...为了减少偏差还引入了一个额外的超参数设置,它不是随机打乱数据,而是根据块的开始时间对数据集进行排序。...更大的嵌入和更多的注意力头似乎可以提高性能,但最好的结果是用一个单独的Transformer 实现的,这表明在有限的数据下,简单是优点。
一、研究背景 从材料设计到药物发现,许多具有重要实际应用意义的科学研究都可以看作是对所有可能的化合物的空间的搜索。由于搜索空间的高维性质,对可能的候选进行枚举是不可行的。...在这里,作者借鉴了最近的工作,在利用GAN进行小分子发现中引入了一种新的训练方法。作者的方法使用遗传算法的思想,可以通过增量更新训练数据集来增强搜索。由模型生成的新的和有效的分子在训练期间被存储。...只有数据集起始的100k个化合物被用于训练。作者修改训练数据以包括分子更大(最多20个原子)的情况时,使用了ZINC数据集的子集。...作者使用了标准的GAN极大极小损失来训练,并使用学习速率为10的-4次方的Adam优化器进行优化。 2.3 训练数据的更新 所有的模型都每隔5个epoch进行一次训练。...因此,作者将训练过程扩展到具有至多20个原子的分子,并从ZINC环数据集中添加了10k分子。
当前基于云计算和大数据的AI算法(例如神经网络)具有自学习能力,非线性映射能力,对任意函数的逼近能力,并行计算能力和容错能力。...在滚动轴承数据成功实现上云后,利用PAAS层提供的AI算法中的BP神经网络对传动机组滚动轴承进行故障诊断,能够在轴承早期故障时发出预警信号,提前对将要发生的轴承,故进行维修或更换,缩短停工停产时间。...实施关键步骤 使用AI算法进行故障预测关键步骤如下: 1、边缘层数据采集与预处理:利用加速度传感器采集轴承的振动信息,由于现场干扰信号会对结果的准确度带来很大影响,需要选用专业级别高灵敏度的采集器。...峭度:振动信号分布特性,当K=3定义为分布曲线具有正常峰度(即零峭度);当K>3时,分布曲线具有正峭度 谐波:对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量,通常称为高次谐波...8、云计算迭代:持续的训练和迭代会提高它的精确度,经过多次迭代之后达到了期望的误差值。由于神经网络需要消耗较多的计算资源,需要使用云计算的并行处理能力。
前言 Python实战之天气预测 1....爬取数据 这里使用request库和正则表达式进行数据的爬取 爬取网上的历史天气数据,这里我使用了成都的历史天气数据(2011-2018年) 之后的天气预测也将会使用成都的历史天气数据 目标网址: http...://tianqi.2345.com 这里说明: 由于数据存在缺失,2016年以前的空气质量数据没有找到 通过分析网址我们得到最后的数据都是存在于js文件中的。...所以我们加上了判断语句,当然细心的小伙伴应该可以看到我们这里还会构造出2019年的链接,这个错误链接我们在后面获取数据的时候会进行处理,若链接是没用的,我们选择不处理,直接pass。...(2011-2018年)(点击可下载) 1.5 分析数据 这里暂时简单分析数据,之后会有文章进行详细分析 Figure_1.png 可见数据变化趋势是非常明显的。
所以研究者通常认为我们要想预测药物作用就得收集尽可能的的信息,比如使用全基因组范围的snp信息来预测复杂性状,但是癌症患者有个特性,就是他们的染色体通常是非整倍体,所以从肿瘤样本里面测序得到可靠的基因型其实是比较困难的...作者选取了Cancer Genome Project (CGP) 数据库里面收录的 700多种细胞系的 138 种药物的作用情况,开发了算法,而且在 4 个符合要求的数据集里面验证了可靠性。 ?...第二步,使用 ridge包的linearRidge()函数做岭回归分析,其中药物敏感性的IC50值需要用car包的powerTransform函数进行转换,根据训练集的数据把模型构建成功就可以使用 predict.linearRidge...() 来预测测试集的病人的药物反应情况了。...第三步,留一交叉验证,每次假装不知道一个细胞系的药物反应情况,用其它的所有的细胞系数据来预测它。最后把预测值和真实值做相关性分析。
NetMHCpan软件用于预测肽段与MHC I型分子的亲和性,最新版本为v4.0, 基于人工神经网络算法,以180000多个定量结合数据和MS衍生的MHC洗脱配体的组合为训练集构建模型。...第二步选择切割肽段的方式,抗原通过抗原表位与MHC分子结合,MHC I型分子可以结合的抗原表位长度为8到11个氨基酸,对应这里的8-11mer,先将蛋白质序列切分成短的肽段之后在进行MHC分子亲和性的预测...通过该软件可以从突变之后的氨基酸序列中预测到与MHC I型分子亲和力较强的肽段,作为候选的肿瘤新抗原。...为了进一步简化分析,相关的数据分析pipeline被开发出来,只需要提供肿瘤患者的体细胞突变数据和HLA分型结果即可,软件自动提取突变氨基酸序列,并进行NetMHCpan分析,类似的软件有很多,NeoPredPipe...更多细节请参考该软件的官方文档。 通过上述的数据分析,可以快速定位出候选的新抗原,然而其中的假阳性率还是非常高的,后续还需要结合体外实验来进一步筛选和过滤。
巴斯Bass扩散模型已成功地用于预测各种新推出的产品以及成熟产品的市场份额主要观点该模型的主要思想来自两个来源:消费者不受社会影响的产品意愿。因为其他人已经采用了该产品,所以倾向于采用该产品。...因此,在优质产品的生命周期中的早期采用者的影响变得足够强大,以致驱使许多其他人也采用该产品。Bass模型显示了如何使用销售数据的前几个时期的信息来对未来的销售做出相当好的预测。...----点击文末 “阅读原文”获取全文完整代码数据资料。本文选自《R语言使用Bass模型进行手机市场产品周期预测》。...点击标题查阅往期内容R语言Bass模型进行销售预测R语言使用Bass模型进行手机市场产品周期预测R语言Bass模型进行销售预测数据挖掘:香水电商销售策略分析机器学习助推精准销售预测Python对商店数据进行...PROPHET模型对天气时间序列进行预测与异常检测R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据Python用ARIMA和SARIMA模型预测销量时间序列数据
对于这些例子中的每一个,都有事件发生的频率(每天、每周、每小时等)和事件发生的时间长度(一个月、一年、一天等)。 在本教程中,我们将使用PyTorch-LSTM进行深度学习时间序列预测。...我们的目标是接收一个值序列,预测该序列中的下一个值。最简单的方法是使用自回归模型,我们将专注于使用LSTM来解决这个问题。 数据准备 让我们看一个时间序列样本。...标准化数据的标准方法是对数据进行转换,使得每一列的均值为0,标准差为1。...我们设置了2个可以自由地调优的参数n_hidden和n_deep_players。更大的参数意味着模型更复杂和更长的训练时间,所以这里我们可以使用这两个参数灵活调整。...还有一些方法可以使用多个系列来进行预测。这被称为多元时间序列预测,我将在以后的文章中介绍。
基本简介 LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现 数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建...是否返回除输出之外的最后一个状态。 区别 cell state 和 hidden state LSTM 的网络结构中,直接根据当前 input 数据,得到的输出称为 hidden state。...还有一种数据是不仅仅依赖于当前输入数据,而是一种伴随整个网络过程中用来记忆,遗忘,选择并最终影响 hidden state 结果的东西,称为 cell state。...例如在设计 encoder-decoder 模型时,我们可能需要对 cell state 的初始值进行设定。...train_x.shape,test_x.shape)) predict_y, test_y = train_model(train_x, train_y, test_x, test_y) #返回原来的对应的预测数值
import java.io.Serializable; import java.time.LocalDate;
既然我从上图中得知出了最后几个点之外,其它数据都在拟合曲线上,那我可以使用前面几个点的拟合结果预测后面几个点并替换掉出错的数据,从而得到一组看起来正常的数据。 2....但是在一些简单的数据模型中,数据之间有很明显的相关性,那我们就可以使用简单的曲线拟合来预测未来的数据。 这些工作都可以使用 Excel 完成,先来尝试一下。...如果需要预测数据,可以修改前推数字以得到后面几个周期的数据。 3. 使用 Math.Net 进行曲线拟合 当然我不可能对每一条数据都扔进 Excel 里进行拟合。...在 C# 中我们可以使用 Math.Net 进行非线性拟合。 Math.Net 是一个开源项目,旨在构建和维护涵盖基础数学的工具箱,以满足 .Net 开发人员的高级需求和日常需求。...替换后的结果如上所示,整体符合前面数据的趋势,使用这组数据进行运算也能得到很好的结果。 源码 https://github.com/DinoChan/SimpleDataPrediction
水循环系统AI建模 为满足系统的稳定性,避免因突然发生故障造成系统停运,需要对常见故障进行预测。...BP神经网络是可以以任意的精度逼近任何的非线性函数,之前曾讲过这方面很多成功的应用,参见大数据||使用AI算法进行滚动轴承故障精准预测 RBF神经网络是另外一种常用算法,可以达到更快的收敛速度,本系统采用...使用AI算法进行故障预测关键步骤如下: 1、边缘层数据采集:利使用一体化数据采集器进行现场信号采集,包括离心泵振动、进口压力、出口压力、出口流量、轴承温度、电机电流等。...根据采集到的信息,选取70%数据作为输入样本,30%数据作为验证样本。对输出状态进行编码输出,构建BP神经网络,进行迭代训练。...||使用AI算法进行滚动轴承故障精准预测
前言 今天主要通过两篇论文介绍如何将 CNN 应用在传统的结构化数据预测任务中,尽量以精简的语言说明主要问题,并提供代码实现和运行 demo ,细节问题请参阅论文。...基于点击率预测任务和自然语言处理中一些任务的相似性(大规模稀疏特征), NLP 的一些方法和 CTR 预测任务的方法其实也是可以互通的。...表示的每次对连续的width个特征进行卷积运算,之后使用一个Flexible pooling机制进行池化操作进行特征聚合和压缩表示,堆叠若干层后将得到特征矩阵作为 MLP 的输入,得到最终的预测结果。...这相当于我们给了一个先验在里面,就是连续的width个特征进行组合更具有意义。 虽然我们可以使用类似空洞卷积的思想增加感受野来使得卷积计算的时候跨越多个特征,但是这仍然具有一定的随机性。...拼接层 经过若干重组后,将重组后生成的特征拼接上原始的特征作为新的输入,后面可以使用各种其他的方法,如 LR,FM,DeepFM 等。
年龄和性别是面部特征的重要方面,确定它们是此类活动的先决条件。许多企业出于各种原因使用这些技术,包括更轻松地与客户合作、更好地适应他们的需求以及提供良好的体验。...人们的性别和年龄使得识别和预测他们的需求变得更加容易。 即使对我们人类来说,从图像中检测性别和年龄也很困难,因为它完全基于外表,有时很难预测,同龄人的外表可能与我们预期的截然不同。...应用 在监控计算机视觉中,经常使用年龄和性别预测。计算机视觉的进步使这一预测变得更加实用,更容易为公众所接受。由于其在智能现实世界应用中的实用性,该研究课题取得了重大进展。...实施 现在让我们学习如何使用 Python 中的 OpenCV 库通过相机或图片输入来确定年龄和性别。 使用的框架是 Caffe,用于使用原型文件创建模型。.../content/gender_deploy.prototxt" genderModel = "/content/gender_net.caffemodel" 第 4 步:年龄和性别类别列表 设置模型的平均值以及要从中进行分类的年龄组和性别列表
前两年的数据将被用作训练数据集,剩余的一年数据将用作测试集。 我们将利用训练集对模型进行训练,并对测试集上的数据进行预测。...这模拟了一个真实世界的情景,每个月都有新的洗发水销售数据,并且可以用于下个月的预测。 我们通过设计训练集和测试集的结构来实现这一点。 我们将所有测试数据集的预测进行整合,并计算误差以评价模型性能。...我们将使用均方根误差(RMSE)作为误差函数,因为它会惩罚较大的偏差,并得出与预测数据相同单位的结果,即洗发水的月销售量。 数据准备 在我们用数据集训练模型之前,我们必须对数据进行一些变换。...预测过程中,我们需要对数据进行相反的变换,使其变回它们的原始尺度,而后再给出预测结果并计算误差。 LSTM模型 我们将使用一个基本的有状态LSTM模型,其中1个神经元将被1000次迭代训练。...由于我们将使用步进验证的方式对测试集12个月中每个月的数据进行预测,所以处理时的批大小为1。 批大小为1也意味着我们将使用同步训练而不是批量训练或小批量训练来拟合该模型。
1、问题背景在Python中,我们可以使用装饰器来修改函数或方法的行为,但当装饰器需要使用一个在实例化时创建的对象时,事情就会变得复杂。...例如,我们想要创建一个装饰器,可以创建一个新的函数/方法来使用对象obj。如果被装饰的对象是一个函数,那么obj必须在函数创建时被实例化。...如果被装饰的对象是一个方法,那么必须为类的每个实例实例化一个新的obj,并将其绑定到该实例。2、解决方案我们可以使用以下方法来解决这个问题:使用inspect模块来获取被装饰对象的签名。...如果被装饰的对象是一个方法,则将obj绑定到self。如果被装饰的对象是一个函数,则实例化obj。返回一个新函数/方法,该函数/方法使用obj。...然后,dec装饰器会返回一个新函数/方法,该函数/方法使用obj。请注意,这种解决方案只适用于对象obj在实例化时创建的情况。如果obj需要在其他时间创建,那么您需要修改此解决方案以适应您的具体情况。
领取专属 10元无门槛券
手把手带您无忧上云