大数据文摘作品 作者:TirthajyotiSarkar 编译:丁慧、katherine Hou、钱天培 说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的。 今天,让我们来谈谈线性回归。没错,作为数据科学界元老级的模型,线性回归几乎是所有数据科学家的入门必修课。抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?未必! 在这篇文章中,文摘菌将介绍8种用Pyth
回归的目的是预测数值型的目标值,最直接的办法是依据输入写出一个目标值的计算公式,比如要计算一个男生可以找到女朋友的概率:
回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。顾名思义,分类算法用于离散型分布预测,如前面讲过的KNN、决策树、朴素贝叶斯、adaboost、SVM、Logistic回归都是分类算法;回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签。
在本文中,我们将使用基因表达数据。这个数据集包含120个样本的200个基因的基因表达数据。这些数据来源于哺乳动物眼组织样本的微阵列实验。
Nikolaus Demmel 慕尼黑工业大学 demmeln@in.tum.de
我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。
最近我们被客户要求撰写关于高维数据惩罚回归方法的研究报告,包括一些图形和统计输出。
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数。然后,我使用该模型生成模拟值,并使用实际收益和模拟收益来测试模型投资组合的性能,以计算风险价值(VaR)与期望损失(ES)。
在基本的线性回归中(可见简单易学的机器学习算法——线性回归(1)),对于一个线性回归为题,我们得到一个线性方程组:
矩阵分解的本质是将原本复杂的矩阵分解成对应的几个简单矩阵的乘积的形式。使得矩阵分析起来更加简单。很多矩阵都是不能够进行特征值分解的。这种情况下,如果我们想通过矩阵分解的形式将原本比较复杂的矩阵问题分解成比较简单的矩阵相乘的形式,会对其进行奇异值分解。
摘要:本文分别介绍了线性回归、局部加权回归和岭回归,并使用python进行了简单实现。
一、基本线性回归模型的抽象 在基本的线性回归中(可见简单易学的机器学习算法——线性回归(1)),对于一个线性回归为题,我们得到一个线性方程组: 在上一篇中我们是构建平方误差函数使得误差函数取得
核回归技术是一组非参数方法,用于通过一组数据点拟合平滑的曲线。Nadaraya-Watson 估计就是这样一种方法。它通常是在自变量分布的核密度估计以及因变量和自变量联合分布的基础上,通过计算因变量的条件期望得到的。
回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将介绍回归分析概念、7种重要的回归模型、10 个重要的回归问题和5个评价指标。
大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,为什么 Matlab 这么受欢迎呢?
数学是阻碍学生想要学习更多化学知识的主要原因之一。作为一名化学工程专业的学生,我理解这一点,特别是对于那些只需要把化学作为通识教育要求的学生来说。从本质上讲,分步解决方案就像你自己的按需数学导师:除了计算答案,Wolfram|Alpha 还向你展示它是如何实现的。这里将阐述六个你一定会在化学课上经常使用的重要数学技能,以及它们与不同化学概念的关系。
本文为《机器学习实战:基于Scikit-Learn和TensorFlow》的读书笔记。 中文翻译参考
案例POT序列在47年的记录期内提供了高于74 m 3 / s 阈值的47个峰值。
最小二乘法(least squares method),也称最小平方法,是一种古老而常用的数学工具,在自然科学、工程技术和人工智能等领域有着广泛地应用,其核心原理就是通过将误差平方和最小化来寻找数据的最佳匹配函数。
在前面的时间,我学习了Logistic回归,这是用来进行二分类学习的一种算法。虽然按照书上的介绍,编写了算法实现代码,但对其原理并不清楚,总感觉没有理解透。于是我又找到吴恩达的Marchine Learning课程,再次学习了线性回归和Logistic回归。
等渗回归是很少被谈论但肯定是最酷的回归技术之一。我之所以说“很少谈论”,是因为与线性回归不同,它不经常被讲授或使用。等渗回归做出一个更笼统的假设,即最能代表数据的函数是单调的,而不是线性的(是的,线性也是单调的,反之亦然)。
前言 最近在看Peter Harrington写的“机器学习实战”,这是我的学习心得,这次是第8章 - 预测数值型数据:回归。 基本概念 回归(regression) - 估算一个依赖变量和其它独立变量的关系。不同于分类的是,它计算的是连续数值,也就是数值型数据。 回归多用于预测。 回归方程(regression equation) : 就是回归分析的结果。一个方程式使用独立变量来计算依赖变量。 线性回归(linear regression) : 回归方程是一个多元一次方程,它是由常量乘以每个独立变量,然
本文探讨了如何使用向量自回归模型(VAR)进行时间序列预测,并提出了基于矩阵分解和并行计算的优化方法。首先,介绍了VAR模型的基本原理和常见应用。然后,详细阐述了如何利用基于优化的方法来找到最佳参数,并使用QR分解来加速计算。最后,探讨了如何进一步改进VAR模型以增强其性能和灵活性。
大数据文摘作品 作者:Emil Wallnér 编译:高宁、Happen、陈玲、Alieen 深度学习的浪潮在五年前开始兴起。随着计算能力的爆炸型增长和几个成功的案例,深度学习引起了大肆宣传。深度学习技术可以用来驾驶车辆,在Atari游戏中进行人机对抗,以及诊断癌症。 开始学习神经网络时,我花了两周的时间进行探索,选择合适的工具,对比不同的云服务以及检索在线课程。但回想起来,我还是希望我可以从第一天就能创建神经网络,这也是这篇文章的目的。 你不需要有任何预备知识。当然如果你对Python,命令行和Jupyt
回归分析是一种广泛使用的统计工具,利用已有的实验数据,通过一个方程来定量的描述变量之间的关系,其中的变量可以分为两类
逻辑回归问题的通俗几何描述 逻辑回归处理的是分类问题。我们可以用通俗的几何语言重新表述它: 空间中有两群点,一群是圆点“〇”,一群是叉点“X”。我们希望从空间中选出一个分离边界,将这两群点分开。 注
作者:龙心尘 && 寒小阳 (感谢投稿) 原文:http://blog.csdn.net/longxinchen_ml/article/details/49284391 一、 引言 前一篇文章关于逻辑回归的很多神奇特性还没来得及深入展开,下面进一步深入。 为了降低理解难度,本文试图用最基础的初等数学来解读逻辑回归,少用公式,多用图形来直观解释推导公式的现实意义,希望使读者能够对逻辑回归有更直观的理解。 二、 逻辑回归问题的通俗几何描述 逻辑回归处理的是分类问题。我们可以用通俗的几何语言重新表述它: 空间中
本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb 对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预测分析任务的起点。但我们不可夸大线性模型(快速且准确地)拟合大型数据集的重要性。如本文所示,在线
GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb
选自Medium 作者:Tirthajyoti Sarkar 机器之心编译 参与:晏奇、刘晓坤 本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb 对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预
选自Technica Curiosa 作者:Nishant Shukla 机器之心编译 参与:Jane W 本文的作者 Nishant Shukla 为加州大学洛杉矶分校的机器视觉研究者,从事研究机器人机器学习技术。Nishant Shukla 一直以来兼任 Microsoft、Facebook 和 Foursquare 的开发者,以及 SpaceX 的机器学习工程师。他还是《Haskell Data Analysis Cookbook》的作者。 TensorFlow 入门级文章: 深度 | 机器学习敲门砖
本文试图成为理解和执行线性回归所需的参考。虽然算法很简单,但只有少数人真正理解了基本原理。
Plotly:协同 Python 和 matplotlib 工作的 web 绘图库 官网链接:https://plot.ly/python/
BAYESFLOW: LEARNING COMPLEX STOCHASTIC MODELS WITH INVERTIBLE NEURAL NETWORKS BAYESFLOW:使用可逆神经网络学习复杂随机模型 https://arxiv.org/pdf/2003.06281
线性回归作为监督学习中经典的回归模型之一,是初学者入门非常好的开始。宏观上考虑理解性的概念,我想我们在初中可能就接触过,y=ax,x为自变量,y为因变量,a为系数也是斜率。如果我们知道了a系数,那么给我一个x,我就能得到一个y,由此可以很好地为未知的x值预测相应的y值。这很符合我们正常逻辑,不难理解。那统计学中的线性回归是如何解释的呢?
1、 投影矩阵与最小二乘:向量子空间投影在机器学习中的应用最为广泛。就拿最小二乘的线性拟合来说,首先根据抽样特征维度假设线性方程形式,即假设函数。
版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.com。 https://blog.csdn.net/c406495762/article/details/78760239
集成电路板等电子产品生产中,控制回焊炉各部分保持工艺要求的温度对产品质量至关重要(点击文末“阅读原文”了解更多)。
在第一章中,我提到最常见的监督学习任务是回归(预测值)和分类(预测类)。在第二章中,我们探讨了一个回归任务,使用各种算法(如线性回归、决策树和随机森林)来预测房屋价值(这将在后面的章节中进一步详细解释)。现在我们将把注意力转向分类系统。
1.什么是线性方程? 从数学上讲我们有一元线性方程和多元线性方程,如下: y = aX + b y = b0 + b1X1 + b2X2 + b3X3 + ... + bnXn + e 2.什么是回归? 回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。假如你想预测小何先生一个月的存款,可能会这么计算: 总工资 = a* 五险一金和公积金 + b*房租和水电费 + c*日常消费 + d*存款 这就是所谓的回归方程(regression equation),其中的a,b
(2)另外,我们想把不确定性也表示出来,希望尽可能快地得到奖励,而不是在未来的某个时刻得到奖励。
领取专属 10元无门槛券
手把手带您无忧上云