首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器视觉应用方向及学习思路总结

    1、halcon软件提供的是快速的图像处理算法解决方案,不能提供相应的界面编程需求,需要和VC++结合起来构造MFC界面,才能构成一套完成的可用软件。 2、机器视觉在工业上的需求主要有二维和三维方面的 二维需求方面有:⑴识别定位;(2)OCR光学字符识别;(3)一维码、二维码识别及二者的结合;(4)测量类(单目相机的标定);(5)缺陷检测系列;(6)运动控制,手眼抓取(涉及手眼标定抓取等方面) 三维需求方面:(1)摄像机双目及多目标定(2)三维点云数据重构 3、要成为一名合格的机器视觉工程师必须具备以下三个方面的知识 (1)图像处理涉及以下几大领域: A、图像处理的基本理论知识(图像理论的基础知识) B、图像增强(对比度拉伸、灰度变换等) C、图像的几何变换(仿射变换,旋转矩阵等) D、图像的频域处理(傅里叶变换、DFT、小波变换、高低通滤波器设计) E、形态学(膨胀、腐蚀、开运算和闭运算以及凸壳等) F、图像分割(HALCON里的Blob分析) G、图像复原 H、运动图像 I、图像配准(模板匹配等) J、模式识别(分类器训练,神经网络深度学习等) 比较好的参考书籍有 经典教材:冈萨雷斯的《数字图像处理》及对应的MATLAB版 杨丹等编著《MATLAB图像处理实例详解》 张铮等编著《数字图像处理与机器视觉——Visual C++与MATLAB实现》

    01

    基于深度学习的图像增强综述

    图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,提高图像的视觉效果。传统的图像增强已经被研究了很长时间,现有的方法可大致分为三类,空域方法是直接对像素值进行处理,如直方图均衡,伽马变换;频域方法是在某种变换域内操作,如小波变换;混合域方法是结合空域和频域的一些方法。传统的方法一般比较简单且速度比较快,但是没有考虑到图像中的上下文信息等,所以取得效果不是很好。 近年来,卷积神经网络在很多低层次的计算机视觉任务中取得了巨大突破,包括图像超分辨、去模糊、去雾、去噪、图像增强等。对比于传统方法,基于CNN的一些方法极大地改善了图像增强的质量。现有的方法大多是有监督的学习,对于一张原始图像和一张目标图像,学习它们之间的映射关系,来得到增强后的图像。但是这样的数据集比较少,很多都是人为调整的,因此需要自监督或弱监督的方法来解决这一问题。本文介绍了近年来比较经典的图像增强模型,并分析其优缺点。

    06

    Semi-supervised learning-based satellite remote sensing object detection method for power transmissi

    众所周知,随着电网的日益复杂,传统的输电塔人工测量方法已经失效,无法满足安全稳定运行的要求。尽管卫星遥感技术的发展为输电塔的高效稳定测量提供了新的前景,但仍有许多问题需要解决。由于恶劣的气候和成像设备的限制,遥感图像中的一些输电塔目标是模糊的,这使得生成数据集和实现高精度输电塔目标检测变得极其困难。为了进一步提高发射塔的检测精度,首次将基于暗通道先验的图像增强算法应用于遥感图像,提高了图像的可解释性。然后,考虑到增强图像中仍有一些传输塔无法手动标记,采用了一种基于伪标记的半监督学习方法来最大限度地利用现有数据。基于这一高质量的数据集,利用移动倒瓶颈卷积和可变形卷积构建了一个传输塔卫星遥感目标检测模型。最后,根据我国某地区的卫星遥感图像数据集进行了烧蚀和对比实验。实验结果表明,图像增强和半监督学习方法都能提高检测精度,与现有主流模型相比,该方法性能更好。

    01

    Self-supervised Image Enhancement Network Training with Low Light Images Only

    现有的图像增强数据集都是通过合成或者调整曝光时间得到的,但存在两个问题:①如何确保预先训练的网络可以用于不同设备、不同场景和不同照明条件下收集的图像,而不是构建新的训练数据集。②如何确定用于监督的正常光图像是最好的,因为相对于一张低光照图像,我们可以得到很多的正常光图像。 为了解决上述问题,本文基于信息熵理论和Retinex模型,提出了第一篇基于深度学习的完全自监督做图像增强的论文,本文提出的网络不用成对的数据集,只需要低光照图像(甚至只要一张低光照图像),训练时间为分钟级(minute-level),可以取得实时的性能。该网络将低光照图像分解为反射部分和照度部分,其中反射部分即为增强后的结果。 本文的理论来源:根据信息熵理论,直方图均匀分布的图像熵最大,信息量最大。基于这一点,本文提出了一个假设,即增强后图像最大通道的直方图分布应与直方图均衡化后的低光照图像最大通道的直方图分布一致。有了这一假设,损失函数的设计就不需要正常光图像,不仅保留了增强后图像的真实性,而且包含充足的信息。作者认为,该方法对低亮度图像的获取没有任何依赖,且训练过程完全self-supervised,因此本文提出的方法具有良好的泛化能力,即使预训练的网络对于新的环境结果不是很好,也可以通过重新训练或者微调的方式改善。 基于最大熵的Retinex模型,其理论来源如下,根据Retinex理论,图像可以分解成反射和照度部分,即

    03

    EnYOLO | 实现SOTA性能的实时图像增强与目标检测框架

    为了应对这些挑战,作者引入了EnYOLO,这是一个集成的实时框架,旨在同时进行具有领域自适应能力的UIE和UOD。 具体来说,UIE和UOD任务头共享相同的网络主干,并采用轻量级设计。此外,为了确保两个任务的平衡训练,作者提出了一种多阶段训练策略,旨在持续提升它们的性能。 另外,作者提出了一种新颖的领域自适应策略,用于对来自不同水下环境的特征嵌入进行对齐。全面实验表明,作者的框架不仅在UIE和UOD任务上达到了最先进(SOTA)的性能,而且在应用于不同的水下场景时也显示出卓越的适应性。作者的效率分析进一步突显了框架在船上部署的巨大潜力。

    01
    领券