暂无搜索历史
上一篇学习了单个配体受体或信号通路的可视化方式,这篇学习多个配体受体对和信号通路及相应基因表达水平的可视化。
CellChat通过从图论、模式识别和流形学习中提取出的方法,能够定量测量复杂的细胞间通讯网络,帮助我们更好地解释这些相互作用关系,基于这些原理能够进行以下分析...
上一篇学习了用cellchat进行单数据集的细胞通讯分析,接下来学习不同可视化方式。
接下来需要选择配体受体数据库,cellchat的数据库是基于文献手动生成的,包含的物种和数量为:
需要准备一个标注好细胞类型的单细胞数据,这里选择seurat官方的pbmc3k数据:
在美学映射那一节中,当我们需要把大于两个变量映射到图形中时,x轴和y轴就已经不够用了,需要通过形状和颜色等可区分的形式来代表新增的变量,但是一味的在一张图中增加...
前面几节学了基本作图和美学映射,虽然有现成的代码,但是对于初学者,可能还是会经常碰到一些报错,这些其实是正常的,即使很熟练了也一样会遇到报错,区别是能否快速找到...
上节学习了ggplot2的基础作图,并掌握了基本的作图模板。但是每次作图只有两个变量映射到了图形中,如下图:
上一节介绍了跟练所需的软件,R包和数据,这节开始跟练书中的第一块内容:数据可视化。
刚开始接触R语言是因为单细胞数据分析的需要,那时完全是零基础,学习过程是边抄别人的代码,边理解这些代码的含义,遇到了比较多的坑,包括软件安装,环境配置,R包安装...
这篇文章的目的是演示Seurat+ORA+GSEA的分析流程,重点是了解每一步分析对象的数据结构,正确的数据结构才能保证函数正常运行,用的是pbmc3k数据,下...
暂未填写公司和职称
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市