文章来源:机器之心。
让机器能根据文章的主题思想生成人类能够读懂的文本摘要是一个重要的 NLP 研究问题。腾讯知文团队、苏黎世联邦理工学院、哥伦比亚大学和腾讯 AI Lab 的研究者针对这一任务提出了一种引入主题模型和强化学习方法的卷积神经网络方法。该论文已被 IJCAI 2018 接收,机器之心在此进行了摘要介绍。
自动文本摘要在很多不同的自然语言处理(NLP)应用中都发挥着重要的作用,比如新闻标题生成[Kraaij et al., 2002] 和 feed 流摘要 [Barzilay and McKeown, 2005]。对于文本摘要来说,概括文章的中心思想、信息丰富性、内容代表性等,都是非常重要的。自动文本摘要的关键难题是准确评估摘要结果、选择重要信息、有效地过滤冗余内容、总结相关信息从而得到可读性强的摘要等。与其它 NLP 任务相比,自动文本摘要有自己的难点。比如,不同于机器翻译任务(输入和输出序列通常长度相近),摘要任务的输入和输出序列大都很不平衡。另外,机器翻译任务通常在输入和输出序列之间有一些直接词义层面的对应,这在摘要任务中却没那么明显。
自动摘要技术有两种类型,即抽取式(extraction)和总结式(abstraction)。抽取式摘要 [Neto et al., 2002] 的目标是通过选择源文档中的重要片段并将它们组合来生成摘要;而总结式摘要[Chopra et al., 2016] 则是根据文档的核心思想来重新组织生成摘要,因此这种摘要的灵活性更高。不同于抽取式摘要,总结式方法能够针对源文档的核心思想重新组织摘要语言,并确保所生成的摘要语法正确且保证可读性;这更接近于人类做摘要的方式,因此也是本论文关注的方法。
近段时间,深度神经网络模型已经在 NLP 任务上得到了广泛应用,比如机器翻译[Bahdanau et al., 2014]、对话生成 [Serban etal., 2016] 和文本摘要 [Nallapati et al., 2016b]。使用循环神经网络(RNN)[Sutskever et al., 2014] 的基于注意力机制的sequence to sequence框架 [Bahdanau et al., 2014] 在 NLP 任务上得到了尤其广泛的应用。但是,基于 RNN 的模型更容易受到梯度消失问题的影响,因为它们具有非线性的链式结构;相比而言,基于 CNN 的模型 [Dauphin et al., 2016] 的结构是分层式的。此外,RNN 的隐藏状态之间的时间依赖也影响了训练过程的并行化,这会使得训练效率低下。
在本论文中,我们提出了一种新方法,该方法基于卷积神经网络的sequence tosequence框架(ConvS2S)[Gehring et al., 2017] ,引入结合主题模型的注意力机制。就我们所知,这是自动总结式文本摘要问题首个采用卷积神经网络框架和多步注意力机制引入主题信息的研究,这能将主题化的和上下文的对齐信息提供到深度学习架构中。此外,我们还通过使用强化学习方法[Paulus et al., 2017] 对我们提出的模型进行了优化。本论文的主要贡献包括:
图 1:引入主题信息的卷积神经网络结构示意图。
我们提出了引入强化学习和主题模型的卷积sequence to sequence模型,其包含一个包含词语信息和主题信息输入的、一种多步联合注意力机制、一种带主题信息偏置的文本生成结构和一个强化学习训练过程。图 1 展示了这种引入主题信息的卷积神经网络模型。
ConvS2S 架构
我们使用 ConvS2S架构 [Gehring etal., 2017] 作为我们的模型的基础架构。在这篇论文中,我们使用了两个卷积模块,分别与词层面和主题层面的embedding相关。
引入主题模型的多步注意力机制
主题模型是一种用于发现源文章集合中出现的抽象主题思想或隐藏语义的统计模型。在本论文中,我们使用了主题模型来获取文档的隐含知识以及将引入主题信息的多步注意力机制集成到ConvS2S 模型中,这有望为文本摘要提供先验知识。现在我们介绍如何通过联合注意机制和带偏置概率生成过程将主题模型信息引入到基本 ConvS2S 框架中。
表 4:模型在 Gigaword语料库上生成的摘要示例。D:源文档,R:参考摘要,OR:引入强化学习的 ConvS2S 模型的输出,OT:引入主题模型和强化学习的 ConvS2S模型的输出。蓝色标记的词是参考摘要中没有出现的主题词。红色标记的词是参考摘要和源文档中都没有出现的主题词。
表 5: Rouge 在 DUC-2004 数据集上的准确度分数。在每种分数上的最佳表现用粗体表示。
表7:模型在中文语料库LCSTS上生成的摘要示例。D:源文档,R:参考摘要,OR:引入强化学习的 ConvS2S 模型的输出,OT:引入主题模型和强化学习的 ConvS2S模型的输出。蓝色标记的词是参考摘要中没有出现的主题词。红色标记的词是参考摘要和源文档中都没有出现的主题词。
论文:一种用于总结式文本摘要的引入主题信息和强化学习的卷积sequence to sequence模型
(A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Modelfor Abstractive Text Summarization)
在本论文中,我们提出了一种解决自动文本摘要任务的深度学习方法,即将主题信息引入到卷积sequenceto sequence(ConvS2S)模型中并使用self-critical强化学习训练方法(SCST)来进行优化。引入词语和主题信息,加入多步注意力机制,我们的方法可以通过带主题偏置的概率生成机制提升所生成摘要的连贯性、多样性和信息丰富性。另一方面,SCST 这样的强化学习训练方法可以根据针对摘要的评价指标 ROUGE 直接优化模型,这也能缓解曝光偏差问题。我们在Gigaword、 DUC-2004 和 LCSTS 数据集上进行实验评估,结果表明我们提出的方法在总结式摘要上的优越性。