前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【奶奶看了都会】Meta开源大模型LLama2部署使用教程,附模型对话效果

【奶奶看了都会】Meta开源大模型LLama2部署使用教程,附模型对话效果

原创
作者头像
卷福同学
修改2023-07-22 20:23:26
16.7K13
修改2023-07-22 20:23:26
举报
文章被收录于专栏:奶奶看了都会

1.写在前面

就在7月19日,MetaAI开源了LLama2大模型,Meta 首席科学家、图灵奖获得者 Yann LeCun在推特上表示Meta 此举可能将改变大模型行业的竞争格局。一夜之间,大模型格局再次发生巨变。

2.LLama2是什么

Llama官网的说明是Llama2下一代开源大语言模型,可免费用于学术研究或商业用途。

目前模型有7B、13B、70B三种规格,预训练阶段使用了2万亿Token,SFT阶段使用了超过10w数据,人类偏好数据超过100w。

另外大家最关心的Llama2和ChatGPT模型的效果对比,在论文里也有提到,

对比GPT-4,Llama2评估结果更优,绿色部分表示Llama2优于GPT4的比例

虽然中文的占比只有0.13%,但后续会有一大推中文扩充词表预训练&领域数据微调的模型被国人放出。这不才开源几天而已,GIthub上就已经有基于Llama2的中文大模型了。。。

3.部署使用

关于LLama2的技术细节就不再多说了,大家可以自行查阅。接下来就教大家怎么自己玩一玩LLama2对话大模型。

大部分人都是没有本地GPU算力的,我们选择在云服务器上部署使用。我这里用的是揽睿星舟平台的GPU服务器(便宜好用,3090只要1.9/小时,且已在平台上预设了模型文件,无需再次下载)

新用户还送2小时的3090算力,记得码写4104

3.1新建空间

登录:https://www.lanrui-ai.com/console/workspace

创建一个工作空间,运行环境镜像挂载公有镜像:pytorch: official-torch2.0-cu1117。选择预训练模型:llama-2-7b 和 llama-2-7b-chat。然后创建实例

3.2下载代码

实例创建完成后,以jupyterLab方式登录服务器,新建一个Terminal,然后进入到data目录下

代码语言:shell
复制
cd data

下载代码

执行下面的命令从GIthub上拉取llama的代码

代码语言:shell
复制
sudo git clone https://github.com/facebookresearch/llama.git

下载完成后,会多一个llama目录

3.3运行脚本

进入llama目录

代码语言:shell
复制
cd llama

安装依赖

代码语言:shell
复制
sudo pip install -e .

测试llama-2-7b模型的文本补全能力

命令行执行:

代码语言:shell
复制
torchrun --nproc_per_node 1 example_text_completion.py \
     --ckpt_dir ../../imported_models/llama-2-7b/Llama-2-7b \
     --tokenizer_path ../../imported_models/llama-2-7b/Llama-2-7b/tokenizer.model \
     --max_seq_len 128 --max_batch_size 4

文本补齐效果示例:

上面的例子是在python脚本里写了一段话,让模型补全后面的内容。

测试llama-2-7b模型的对话能力

修改llama目录权限为777,再修改example_chat_completion.py文件中的ckpt_dirtokenizer_path路径为你的llama-2-7b-chat模型的绝对路径

代码语言:shell
复制
// 1.修改目录权限为可写入
chmod 777 llama

//2.修改example_chat_completion.py文件里的参数
ckpt_dir: str = "/home/user/imported_models/llama-2-7b-chat/Llama-2-7b-chat/",
tokenizer_path: str = "/home/user/imported_models/llama-2-7b-chat/Llama-2-7b-chat/tokenizer.model"

//3.运行对话脚本
torchrun --nproc_per_node 1 example_chat_completion.py

这里我修改提示语让它用中文回答,执行对话脚本后,对话效果如下:

代码语言:shell
复制
torchrun --nproc_per_node 1 example_chat_completion.py

说明:目前官方还没有提供UI界面或是API脚本代码给咱使用,还没法进行对话交互,如果有懂python的友友,可以自行加个UI界面,欢迎大家留言讨论。

4.下载更多模型

llama代码里有download.sh脚本可以下载其他模型,但是下载需要的URL需要自行获取。下载步骤如下:

1.Meta AI网站获取下载URL

MetaAI下载模型页地址:https://ai.meta.com/llama/#download-the-model

点击Download后,要求填入一些信息和邮箱,提交后会给你的邮箱发一个下载URL,注意这个是你自己的下载链接哦~

下图是小卷邮箱里收到的模型下载链接

2.下载模型

服务器上命令行执行

代码语言:shell
复制
sudo bash download.sh

接着按照提示粘贴下载URL和选择要下载的模型

总结

对于国内大模型使用来说,随着开源可商用的模型越来越多,国内大模型肯定会再次迎来发展机遇。

文章原创不易,欢迎多多转发,点赞,关注

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.写在前面
  • 2.LLama2是什么
  • 3.部署使用
    • 3.1新建空间
      • 3.2下载代码
        • 3.3运行脚本
          • 测试llama-2-7b模型的文本补全能力
            • 测试llama-2-7b模型的对话能力
            • 4.下载更多模型
            • 总结
            相关产品与服务
            云服务器
            云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档