Author: 码科智能
度量学习是ReID任务中常用的方式之一,今天来看下一篇关于如何改进度量学习的论文。来自2016年NeurIPS上的一篇论文,被引用超过900次。
论文:Improved Deep Metric Learning with Multi-class N-pair Loss Objective. 链接:论文.
// N-pair loss
import torch
import torch.nn.functional as F
class NPairMCLoss(torch.nn.Module):
def __init__(self, margin=0.1):
super(NPairMCLoss, self).__init__()
self.margin = margin
def forward(self, anchors, positives, negatives):
# 计算anchor和positive之间的距离
pos_distance = F.pairwise_distance(anchors, positives)
# 计算anchor和negative之间的距离
neg_distance = F.pairwise_distance(anchors, negatives)
# 计算损失函数
loss = torch.mean(torch.relu(pos_distance - neg_distance + self.margin))
return loss
// 调用示例
# 创建NPairMCLoss对象
loss_fn = NPairMCLoss(margin=0.1)
# 假设有一批输入数据 anchors, positives, negatives
anchors = torch.randn(16, 128)
positives = torch.randn(16, 128)
negatives = torch.randn(16, 128)
# 计算损失
loss = loss_fn(anchors, positives, negatives)
# 打印损失值
print("Loss:", loss.item())