前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【深度学习实验】循环神经网络(五):基于GRU的语言模型训练(包括自定义门控循环单元GRU)

【深度学习实验】循环神经网络(五):基于GRU的语言模型训练(包括自定义门控循环单元GRU)

作者头像
Qomolangma
发布2024-07-30 08:58:30
1870
发布2024-07-30 08:58:30
举报
文章被收录于专栏:深度学习

一、实验介绍

  • 基于门控的循环神经网络(Gated RNN)
    • 门控循环单元(GRU)
      • 门控循环单元(GRU)具有比传统循环神经网络更少的门控单元,因此参数更少,计算效率更高。GRU通过重置门更新门来控制信息的流动,从而改善了传统循环神经网络中的长期依赖问题。
    • 长短期记忆网络(LSTM)
      • 长短期记忆网络(LSTM)是另一种常用的门控循环神经网络结构。LSTM引入了记忆单元输入门输出门以及遗忘门等门控机制,通过这些门控机制可以选择性地记忆、遗忘和输出信息,有效地处理长期依赖和梯度问题。
  • GRU示意图:
GRU 模块图示
GRU 模块图示

二、实验环境

  本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

代码语言:javascript
复制
conda create -n DL python=3.7 
代码语言:javascript
复制
conda activate DL
代码语言:javascript
复制
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
代码语言:javascript
复制
conda install matplotlib
代码语言:javascript
复制
 conda install scikit-learn

2. 库版本介绍

软件包

本实验版本

目前最新版

matplotlib

3.5.3

3.8.0

numpy

1.21.6

1.26.0

python

3.7.16

scikit-learn

0.22.1

1.3.0

torch

1.8.1+cu102

2.0.1

torchaudio

0.8.1

2.0.2

torchvision

0.9.1+cu102

0.15.2

三、实验内容

(一)自定义门控循环单元(GRU,Gated Recurrent Unit)

1. get_params
代码语言:javascript
复制
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(inputs, hiddens):
        ctx = device
        param = torch.rand((inputs, hiddens))
        param.to(ctx)
        return param
    
    def three():
        return (normal(num_inputs, num_hiddens),
                normal(num_hiddens, num_hiddens),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal(num_hiddens, num_outputs)
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

get_params 函数用于初始化模型的参数。它接受三个参数:vocab_size 表示词汇表的大小,num_hiddens 表示隐藏单元的数量,device 表示模型所在的设备(如 CPU 或 GPU)。

  • 首先,根据 vocab_size 初始化 num_inputsnum_outputs,它们的值都等于 vocab_size
  • 然后,定义了一个内部函数 normal,该函数用于生成一个服从均匀分布的随机参数矩阵。这个函数返回一个形状为 (inputs, hiddens) 的随机参数矩阵,并将其移动到指定的设备上。
  • 接下来,定义了另一个内部函数 three,该函数用于生成三个参数组成的元组。这三个参数分别表示更新门参数、重置门参数和候选隐状态参数。
  • 使用 three 函数分别初始化了更新门参数 W_xz, W_hz, b_z,重置门参数 W_xr, W_hr, b_r,候选隐状态参数 W_xh, W_hh, b_h
  • 然后,通过调用 normal 函数初始化了输出层参数 W_hqb_q
  • 最后,将所有的参数放入一个列表 params 中,并设置它们的 requires_grad 属性为 True,表示这些参数需要计算梯度。
  • 返回参数列表 params
2. init_gru_state
代码语言:javascript
复制
def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

init_gru_state 函数用于初始化隐藏状态,作为时间步 t=0 时的输入。它接受三个参数:batch_size 表示批次大小,num_hiddens 表示隐藏单元的数量,device 表示模型所在的设备。

  • 使用 torch.zeros 函数创建并返回一个形状为 (batch_size, num_hiddens) 的全零张量,表示初始的隐藏状态。
3. gru
代码语言:javascript
复制
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # @符号为矩阵乘法的运算符号
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

gru 函数是实现门控循环单元的关键部分,接受三个参数:inputs 表示输入序列,state 表示隐藏状态,params 表示模型的参数。

  • 首先,从 params 中解包出更新门参数、重置门参数、候选隐状态参数以及输出层参数。
  • 然后,通过一个循环遍历输入序列 inputs
  • 在每个时间步,根据输入 X 和当前的隐藏状态 H,计算更新门 Z、重置门 R 和候选隐状态 H_tilda
  • 然后,根据门控机制和候选隐状态,计算新的隐藏状态 H
  • 接着,使用隐藏状态 H 计算输出 Y
  • 将输出 Y 添加到输出列表 outputs 中。
  • 循环结束后,使用 torch.cat 函数将输出列表中的所有输出连接起来,得到一个形状为 (seq_length * batch_size, num_outputs) 的张量,表示模型在整个序列上的输出。
  • 最后,返回连接后的输出张量和最终的隐藏状态 (H,)

(二)创建模型

0. 超参数
代码语言:javascript
复制
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_epochs, lr= 28, 256, 200, 1
device = try_gpu()
  • 调用d2l.load_data_time_machine函数加载了训练数据,并设置了一些训练超参数。
1. 使用上述手动实现的GRU函数
代码语言:javascript
复制
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
  • 使用先前定义的参数初始化函数、隐藏状态初始化函数和GRU函数创建自定义的RNN模型model
  • 调用d2l.train_ch8函数对该模型进行训练。
2. 调用Pytorch库的GRU类
代码语言:javascript
复制
gru_layer = nn.GRU(vocab_size, num_hiddens)
model_gru = RNNModel(gru_layer, vocab_size)
train(model_gru, train_iter, vocab, lr, num_epochs, device)
  • 创建了一个使用PyTorch库中的GRU类的model_gru,并对其进行训练。
  • 关于训练过程,请继续阅读

(三)基于GRU的语言模型训练

注:本实验使用Pytorch库的GRU类,不使用自定义的GRU函数

1. RNNModel类
2. 训练、测试及其余辅助函数
3. 主函数
a. 训练
代码语言:javascript
复制
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_epochs, lr= 28, 256, 200, 1
device = try_gpu()
gru_layer = nn.GRU(vocab_size, num_hiddens)
model_gru = RNNModel(gru_layer, vocab_size)
train(model_gru, train_iter, vocab, lr, num_epochs, device)

print(predict('time ', 10, model_gru, vocab, device))
  • 训练中每个小批次(batch)的大小和每个序列的时间步数(time step)的值分别为32,25
  • 加载的训练数据迭代器和词汇表
  • vocab_size 是词汇表的大小,num_hiddens 是GRU 隐藏层中的隐藏单元数量,num_epochs 是训练的迭代次数,lr 是学习率
  • 选择可用的 GPU 设备进行训练,如果没有可用的 GPU,则会使用 CPU
  • 训练模型
  • 模型测试
b. 测试结果
4. 代码整合
代码语言:javascript
复制
# 导入必要的库
import torch
from torch import nn
import torch.nn.functional as F
from d2l import torch as d2l
import math


class RNNModel(nn.Module):

    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        self.num_directions = 1
        self.linear = nn.Linear(self.num_hiddens, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    # 在第一个时间步,需要初始化一个隐藏状态,由此函数实现
    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return torch.zeros((self.num_directions * self.rnn.num_layers,
                                batch_size, self.num_hiddens),
                               device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))


def train(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])

    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)

    for epoch in range(num_epochs):
        ppl, speed = train_epoch(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            animator.add(epoch + 1, [ppl])
    print('Train Done!')
    torch.save(net.state_dict(), 'chapter6.pth')
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')


def train_epoch(net, train_iter, loss, updater, device, use_random_iter):
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        if isinstance(net, nn.Module) and not isinstance(state, tuple):
            # state对于nn.GRU是个张量
            state.detach_()
        else:
            # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
            for s in state:
                s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * d2l.size(y), d2l.size(y))
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()


def predict(prefix, num_preds, net, vocab, device):
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.reshape(torch.tensor(
        [outputs[-1]], device=device), (1, 1))
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])


def grad_clipping(net, theta):
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm


def try_gpu(i=0):
    # """如果存在,则返回gpu(i),否则返回cpu()"""
    # # if torch.cuda.device_count() >= i + 1:
    # #     return torch.device(f'cuda:{i}')
    return torch.device('cpu')


batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_epochs, lr = 28, 256, 200, 1
device = try_gpu()

gru_layer = nn.GRU(vocab_size, num_hiddens)
model_gru = RNNModel(gru_layer, vocab_size)
train(model_gru, train_iter, vocab, lr, num_epochs, device)

print(predict('time ', 10, model_gru, vocab, device))
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-01-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
      • 2. 库版本介绍
      • 三、实验内容
        • (一)自定义门控循环单元(GRU,Gated Recurrent Unit)
          • 1. get_params
          • 2. init_gru_state
          • 3. gru
        • (二)创建模型
          • 0. 超参数
          • 1. 使用上述手动实现的GRU函数
          • 2. 调用Pytorch库的GRU类
        • (三)基于GRU的语言模型训练
          • 1. RNNModel类
          • 2. 训练、测试及其余辅助函数
          • 3. 主函数
          • 4. 代码整合
      相关产品与服务
      GPU 云服务器
      GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档