在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到
,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同
1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。 2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此 键关联。键和映射值的类型可能不同。 3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。 4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。 5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问 value。 6. 它的迭代器至少是前向迭代器。
函数声明 | 功能介绍 |
---|---|
unordered_map | 构造不同格式的 unordered_map 对象 |
函数声明 | 功能介绍 |
---|---|
bool empty() const | 检测 unordered_map 是否为空 |
size_t size() const | 获取 unordered_map 的有效元素个数 |
函数声明 | 功能介绍 |
---|---|
begin | 返回 unordered_map 第一个元素的迭代器 |
end | 返回 unordered_map 最后一个元素下一个位置的迭代器 |
cbegin | 返回 unordered_map 第一个元素的 const 迭代器 |
cend | 返回 unordered_map 最后一个元素下一个位置的 const 迭代器 |
函数声明 | 功能介绍 |
---|---|
operator[] | 返回与 key 对应的 value ,没有一个默认值 |
注意:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶 中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中, 将key对应的value返回。
函数声明 | 功能介绍 |
---|---|
iterator find(const K& key) | 返回 key 在哈希桶中的位置 |
size_t count(const K& key) | 返回哈希桶中关键码为 key 的键值对的个数 |
注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1
函数声明 | 功能介绍 |
---|---|
size_t bucket_count()const | 返回哈希桶中桶的总个数 |
size_t bucket_size(size_t n)const | 返回 n 号桶中有效元素的总个数 |
size_t bucket(const K& key) | 返回元素 key 所在的桶号 |
unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在 查找一个元素 时,必须要经过关键码的多次比较。 顺序查找时间复杂度为 O(N) ,平衡树中为树的高度,即
,搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以 不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数 (hashFunc) 使元素的存储位置与它的关键码之间能够建立 一一映射的关系,那么在查找时通过该函数可以很快找到该元素。 当向该结构中: 插入元素 根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放 搜索元素 对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置 取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法, 哈希方法中使用的转换函数称为哈希 ( 散列 ) 函数,构造出来的结构称
为哈希表 (Hash Table)( 或者称散列表 )
不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突 或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为 “ 同义词 ”。
发生哈希冲突该如何处理呢?
引起哈希冲突的一个原因可能是: 哈希函数设计不够合理。
哈希函数设计原则: 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值 域必须在0到m-1之间 哈希函数计算出来的地址能均匀分布在整个空间中 哈希函数应该比较简单
1. 直接定址法--(常用) 取关键字的某个线性函数为散列地址: Hash ( Key ) = A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况
2. 除留余数法--(常用) 设散列表中允许的 地址数为 m ,取一个不大于 m ,但最接近或者等于 m 的质数 p 作为除数, 按照哈希函数: Hash(key) = key% p(p<=m), 将关键码转换成哈希地址
3. 平方取中法--(了解) 假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
4. 折叠法--(了解) 折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这 几部分叠加求和,并按散列表表长,取后几位作为散列地址。 折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
5. 随机数法--(了解) 选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中 random为随机数函数。 通常应用于关键字长度不等时采用此法
6. 数学分析法--(了解) 设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定 相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只 有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散 列地址。
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
解决哈希冲突两种常见的方法是:闭散列和开散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有 空位置,那么可以把 key 存放到冲突位置中的 “ 下一个 ” 空位置中去。
开散列法又叫链地址法 ( 开链法 ) ,首先对关键码集合用散列函数计算散列地址,具有相同地 址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链 接起来,各链表的头结点存储在哈希表中
学习编程就得循环渐进,扎实基础,勿在浮沙筑高台