大家好,我是稳稳,一个曾经励志用技术改变世界,现在为失业做准备的中年奶爸程序员,与你分享生活和学习的点滴。
平时开发如果遇到内存问题,不得不排查的方向除了泄漏,还有就是内存大户图片了。
图片的加载看起来已经有Glide等成熟方案,但是难免还是会遇到要手动加载以及编辑的情况,这个时候就需要特别注意了。
自从做了图片编辑相关的功能以后,才发现书到用时方恨少,今天来复习一下
好了,废话不多说了,咱们继续来学习
#面试#android#性能优化#Bitmap#图片
哦对了,文章结尾给大家准备了一个彩蛋
2024年双十一期间,某头部电商App的瀑布流列表滑动时突发卡顿,帧率从60FPS暴跌至12FPS!
通过Systrace分析发现,80%的掉帧事件与Bitmap内存分配相关。
本文结合美团、字节跳动实战经验,深度拆解Bitmap区域解码的四大内存管理误区,附阿里P7级面试题深度剖析!
源码定位(BitmapFactory.java):
public static Bitmap decodeFile(String pathName) {
return decodeFile(pathName, null); // 默认全图解码
}
灾难现场:
优化方案:
val options = BitmapFactory.Options().apply {
inSampleSize = 4 // 采样率压缩
inPreferredConfig = Bitmap.Config.RGB_565 // 内存减半
}
BitmapFactory.decodeFile(path, options)
核心原理: 通过inSampleSize实现像素降维打击(width/2 * height/2),RGB_565将每像素字节数从4B降为2B
源码定位(BitmapFactory.cpp):
if (reuseBitmap && canUseForInBitmap(reuseBitmap, options)) {
skiaBitmap->setPixelRef(reuseBitmap->pixelRef(), x, y);
}
典型错误:
// 错误复用:尺寸/格式不匹配
Bitmap reused = Bitmap.createBitmap(100, 100, ARGB_8888);
options.inBitmap = reused;
Bitmap newBmp = decodeFile("4K_image.jpg", options); // Crash!
正确姿势:
object BitmapPool {
private val pool = mutableMapOf<Pair<Int, Int>, Bitmap>()
fun getReusable(width: Int, height: Int): Bitmap? {
return pool[width to height]?.takeIf { it.isRecycled.not() }
}
}
// 解码前匹配缓存
options.inBitmap = BitmapPool.getReusable(targetWidth, targetHeight)
底层机制:复用Bitmap需满足尺寸≥目标图且像素格式一致,否则触发IllegalArgumentException
源码解析(BitmapRegionDecoder.java):
public static BitmapRegionDecoder newInstance(byte[] data,
int offset, int length, boolean isShareable) {
return nativeNewInstance(data, offset, length, isShareable);
}
public Bitmap decodeRegion(Rect rect, Options options) {
return nativeDecodeRegion(mNativeBRD, rect.left, rect.top,
rect.right - rect.left, rect.bottom - rect.top, options);
}
实战翻车:
val brd = BitmapRegionDecoder.newInstance(inputStream, false)
brd.decodeRegion(visibleRect, options) // 仅解码可见区域
内存对比:
经典错误:
val cache = LruCache<String, Bitmap>(maxSize) {
override fun sizeOf(key: String, value: Bitmap): Int {
return value.byteCount // 未考虑Native内存
}
}
优化方案:
class NativeAwareCache(maxSize: Int) : LruCache<String, Bitmap>(maxSize) {
overridefunsizeOf(key: String, value: Bitmap): Int {
return value.allocationByteCount // 包含Native内存
}
overridefunentryRemoved(evicted: Boolean, key: String,
oldValue: Bitmap, newValue: Bitmap?) {
if (oldValue.isRecycled.not()) oldValue.recycle()
}
}
核心原理:
工程级方案:
fun loadHighResImage(imageView: ImageView, path: String) {
val targetWidth = imageView.width
val options = BitmapFactory.Options().apply {
inJustDecodeBounds = true
}
BitmapFactory.decodeFile(path, options)
options.inSampleSize = calculateInSampleSize(options, targetWidth, targetWidth)
options.inJustDecodeBounds = false
options.inPreferredConfig = Bitmap.Config.RGB_565
val bitmap = BitmapFactory.decodeFile(path, options)
imageView.setImageBitmap(bitmap)
}
privatefuncalculateInSampleSize(options: BitmapFactory.Options,
reqWidth: Int, reqHeight: Int): Int {
val (width, height) = options.run { outWidth to outHeight }
var inSampleSize = 1
while (width / inSampleSize > reqWidth || height / inSampleSize > reqHeight) {
inSampleSize *= 2
}
return inSampleSize
}
技术要点:
通过本文剖析,开发者应立即实施:
性能箴言: "大图如猛虎,内存似深渊; 区域加复用,流畅似神仙!"
彩蛋:来自技术人的浪漫