考虑一下这一产出:
int foo (int, char) {std::cout << "foo\n"; return 0;}
double bar (bool, double, long ) {std::cout << "bar\n"; return 3.5;}
bool baz (char, short, float) {std::cout << "baz\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
multiFunction<2,3,3> (tuple, foo, bar, baz); // foo bar baz
}
因此multiFunction<2,3,3>
将tuple
的前2个元素传递给foo
,接下来的3个tuple
元素传递给bar
,等等.我做到了这一点(除非函数有重载,这是一个单独的问题)。但是被调用的每个函数的返回值都会丢失。我希望这些返回值存储在某个地方,比如
std::tuple<int, double, bool> result = multiFunction<2,3,3> (tuple, foo, bar, baz);
但我不知道怎么实现。对于那些想要帮助完成这个任务的人,下面是我的(更新的)工作代码,它只将输出存储到一个字符串流中。返回所有值并不容易,特别是如果保存在流中的对象是复杂的类。
#include <iostream>
#include <tuple>
#include <utility>
#include <sstream>
template <std::size_t N, typename Tuple>
struct TupleHead {
static auto get (const Tuple& tuple) { // The subtuple from the first N components of tuple.
return std::tuple_cat (TupleHead<N-1, Tuple>::get(tuple), std::make_tuple(std::get<N-1>(tuple)));
}
};
template <typename Tuple>
struct TupleHead<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <std::size_t N, typename Tuple>
struct TupleTail {
static auto get (const Tuple& tuple) { // The subtuple from the last N components of tuple.
return std::tuple_cat (std::make_tuple(std::get<std::tuple_size<Tuple>::value - N>(tuple)), TupleTail<N-1, Tuple>::get(tuple));
}
};
template <typename Tuple>
struct TupleTail<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&) {
return f(std::get<Is>(tuple)...);
}
template <typename Tuple, typename F>
auto functionOnTuple (const Tuple& tuple, F f) {
return functionOnTupleHelper (tuple, f, std::make_index_sequence<std::tuple_size<Tuple>::value>{});
}
template <typename Tuple, typename... Functions> struct MultiFunction;
template <typename Tuple, typename F, typename... Fs>
struct MultiFunction<Tuple, F, Fs...> {
template <std::size_t I, std::size_t... Is>
static inline auto execute (const Tuple& tuple, std::ostringstream& oss, const std::index_sequence<I, Is...>&, F f, Fs... fs) {
const auto headTuple = TupleHead<I, Tuple>::get(tuple);
const auto tailTuple = TupleTail<std::tuple_size<Tuple>::value - I, Tuple>::get(tuple);
// functionOnTuple (headTuple, f); // Always works, though return type is lost.
oss << std::boolalpha << functionOnTuple (headTuple, f) << '\n'; // What about return types that are void???
return MultiFunction<std::remove_const_t<decltype(tailTuple)>, Fs...>::execute (tailTuple, oss, std::index_sequence<Is...>{}, fs...);
}
};
template <>
struct MultiFunction<std::tuple<>> {
static auto execute (const std::tuple<>&, std::ostringstream& oss, std::index_sequence<>) { // End of recursion.
std::cout << std::boolalpha << oss.str();
// Convert 'oss' into the desired tuple? But how?
return std::tuple<int, double, bool>(); // This line is just to make the test compile.
}
};
template <std::size_t... Is, typename Tuple, typename... Fs>
auto multiFunction (const Tuple& tuple, Fs... fs) {
std::ostringstream oss;
return MultiFunction<Tuple, Fs...>::execute (tuple, oss, std::index_sequence<Is...>{}, fs...);
}
// Testing
template <typename T> int foo (int, char) {std::cout << "foo<T>\n"; return 0;}
double bar (bool, double, long ) {std::cout << "bar\n"; return 3.5;}
template <int...> bool baz (char, short, float) {std::cout << "baz<int...>\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
std::tuple<int, double, bool> result = multiFunction<2,3,3> (tuple, foo<bool>, bar, baz<2,5,1>); // foo<T> bar baz<int...>
}
发布于 2016-03-18 08:12:46
这里有一种方法,可以贪婪地推导出参数的数量:
#include <tuple>
namespace detail {
using namespace std;
template <size_t, size_t... Is, typename Arg>
constexpr auto call(index_sequence<Is...>, Arg&&) {return tuple<>{};}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto call(index_sequence<Is...>, ArgT&&, Fs&&...);
template <size_t offset, size_t... Is,
typename ArgT, typename F, typename... Fs,
typename=decltype(declval<F>()(get<offset+Is>(declval<ArgT>())...))>
constexpr auto call(index_sequence<Is...>, ArgT&& argt, F&& f, Fs&&... fs) {
return tuple_cat(make_tuple(f(get<offset+I>(forward<ArgT>(argt))...)),
call<offset+sizeof...(Is)>(index_sequence<>{},
forward<ArgT>(argt),
forward<Fs>(fs)...));}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto call(index_sequence<Is...>, ArgT&& argt, Fs&&... fs) {
return call<offset>(index_sequence<Is..., sizeof...(Is)>{},
forward<ArgT>(argt), forward<Fs>(fs)...);}
}
template <typename ArgT, typename... Fs>
constexpr auto multifunction(ArgT&& argt, Fs&&... fs) {
return detail::call<0>(std::index_sequence<>{},
std::forward<ArgT>(argt), std::forward<Fs>(fs)...);}
演示。但是,由于tuple_cat
是递归调用的,因此返回值的数量具有二次时间复杂度。相反,我们可以使用稍微修改过的call
版本来获取每个调用的索引--然后直接获得实际的tuple
:
#include <tuple>
namespace detail {
using namespace std;
template <size_t, size_t... Is, typename Arg>
constexpr auto indices(index_sequence<Is...>, Arg&&) {return tuple<>{};}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto indices(index_sequence<Is...>, ArgT&&, Fs&&...);
template <size_t offset, size_t... Is, typename ArgT, typename F, class... Fs,
typename=decltype(declval<F>()(get<offset+Is>(declval<ArgT>())...))>
constexpr auto indices(index_sequence<Is...>, ArgT&& argt, F&& f, Fs&&... fs){
return tuple_cat(make_tuple(index_sequence<offset+Is...>{}),
indices<offset+sizeof...(Is)>(index_sequence<>{},
forward<ArgT>(argt),
forward<Fs>(fs)...));}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto indices(index_sequence<Is...>, ArgT&& argt, Fs&&... fs) {
return indices<offset>(index_sequence<Is..., sizeof...(Is)>{},
forward<ArgT>(argt), forward<Fs>(fs)...);}
template <typename Arg, typename F, size_t... Is>
constexpr auto apply(Arg&& a, F&& f, index_sequence<Is...>) {
return f(get<Is>(a)...);}
template <typename ITuple, typename Args, size_t... Is, typename... Fs>
constexpr auto apply_all(Args&& args, index_sequence<Is...>, Fs&&... fs) {
return make_tuple(apply(forward<Args>(args), forward<Fs>(fs),
tuple_element_t<Is, ITuple>{})...);
}
}
template <typename ArgT, typename... Fs>
constexpr auto multifunction(ArgT&& argt, Fs&&... fs) {
return detail::apply_all<decltype(detail::indices<0>(std::index_sequence<>{},
std::forward<ArgT>(argt),
std::forward<Fs>(fs)...))>
(std::forward<ArgT>(argt), std::index_sequence_for<Fs...>{},
std::forward<Fs>(fs)...);}
演示2。
发布于 2016-03-18 08:16:35
建筑从地面向上和忽略完美的转发,使我不得不键入较少。我们需要几个助手。首先,我们需要一个应用程序的部分版本,它从我们要应用到函数的元组中获取哪些索引:
<class Tuple, class F, size_t... Is>
auto partial_apply(Tuple tuple, F f, std::index_sequence<Is...>) {
return f(get<Is>(tuple)...);
}
然后,我们需要为元组的每个子集调用该函数。假设我们已经将所有函数和索引包装在一个元组中:
template <class Tuple, class FsTuple, class IsTuple, size_t... Is>
auto multi_apply(Tuple tuple, FsTuple fs, IsTuple indexes, std::index_sequence<Is...>) {
return std::make_tuple(
partial_apply(tuple,
std::get<Is>(fs),
std::get<Is>(indexes)
)...
);
}
因此,在这种情况下,我们最终想要调用multi_apply(tuple, <foo,bar,baz>, <<0,1>,<2,3,4>,<5,6,7>>, <0, 1, 2>)
。
我们所需要知道的就是构建indexes
部件。我们从<2,3,3>
开始。我们需要得到部分和(<0,2,5>
),并将其添加到索引序列<<0,1>,<0,1,2>,<0,1,2>>
中。所以我们可以写一个部分和函数:
template <size_t I>
using size_t_ = std::integral_constant<size_t, I>;
template <class R, size_t N>
R partial_sum_(std::index_sequence<>, R, size_t_<N> ) {
return R{};
}
template <size_t I, size_t... Is, size_t... Js, size_t S>
auto partial_sum_(std::index_sequence<I, Is...>,
std::index_sequence<Js...>, size_t_<S> )
{
return partial_sum_(std::index_sequence<Is...>{},
std::index_sequence<Js..., S>{}, size_t_<S+I>{} );
}
template <size_t... Is>
auto partial_sum_(std::index_sequence<Is...> is)
{
return partial_sum_(is, std::index_sequence<>{}, size_t_<0>{} );
};
我们可以用它作为一个元组生成所有索引:
template <size_t... Is, size_t N>
auto increment(std::index_sequence<Is...>, size_t_<N> )
{
return std::index_sequence<Is+N...>{};
}
template <class... Seqs, size_t... Ns>
auto make_all_indexes(std::index_sequence<Ns...>, Seqs... seqs)
{
return std::make_tuple(increment(seqs, size_t_<Ns>{})...);
}
就像这样:
template <size_t... Is, class Tuple, class... Fs>
auto multiFunction(Tuple tuple, Fs... fs)
{
static_assert(sizeof...(Is) == sizeof...(Fs));
return multi_apply(tuple,
std::make_tuple(fs...),
make_all_indexes(
partial_sum_(std::index_sequence<Is...>{}),
std::make_index_sequence<Is>{}...
),
std::make_index_sequence<sizeof...(Is)>{}
);
}
如果要处理void
返回,只需使partial_apply
返回单个元素(或空元组)的元组,并将multi_apply
中的make_tuple()
用法更改为tuple_cat()
。
发布于 2016-03-18 09:37:20
这里还有另一个难题:
template<std::size_t N>
constexpr Array<std::size_t, N> scan(std::size_t const (&a)[N])
{
Array<std::size_t, N> b{};
for (int i = 0; i != N - 1; ++i)
b[i + 1] = a[i] + b[i];
return b;
}
template<std::size_t O, std::size_t... N, class F, class Tuple>
inline decltype(auto) eval_from(std::index_sequence<N...>, F f, Tuple&& t)
{
return f(std::get<N + O>(std::forward<Tuple>(t))...);
}
template<std::size_t... O, std::size_t... N, class Tuple, class... F>
inline auto multi_function_impl1(std::index_sequence<O...>, std::index_sequence<N...>, Tuple&& t, F... f)
{
return pack(eval_from<O>(std::make_index_sequence<N>(), f, std::forward<Tuple>(t))...);
}
template<std::size_t... I, std::size_t... N, class Tuple, class... F>
inline auto multi_function_impl0(std::index_sequence<I...>, std::index_sequence<N...>, Tuple&& t, F... f)
{
constexpr std::size_t ns[] = {N...};
constexpr auto offsets = scan(ns);
return multi_function_impl1(std::index_sequence<offsets[I]...>(), std::index_sequence<N...>(), std::forward<Tuple>(t), f...);
}
template<std::size_t... N, class Tuple, class... F>
auto multi_function(Tuple&& t, F... f)
{
return multi_function_impl0(std::make_index_sequence<sizeof...(N)>(), std::index_sequence<N...>(), std::forward<Tuple>(t), f...);
}
其中pack
和Array
分别类似于std::make_tuple
和std::array
,但是为了克服一些问题:
std::make_tuple
破坏了它的args,因此失去了引用。std::array
不能用c++14中的参数写它的标记https://stackoverflow.com/questions/36087785
复制相似问题