前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >浅谈Attention-based Model【原理篇】

浅谈Attention-based Model【原理篇】

作者头像
用户1148830
发布2018-01-08 10:36:05
1.6K0
发布2018-01-08 10:36:05
举报
文章被收录于专栏:来自地球男人的部落格

计划分为三个部分: 浅谈Attention-based Model【原理篇】(你在这里) 浅谈Attention-based Model【源码篇】 浅谈Attention-based Model【实践篇】

0. 前言

看了台大的李宏毅老师关于Attention部分的内容,这一部分讲的不错(其实李宏毅老师其它部分的内容也不错,比较幽默,安利一下),记录一下,本博客的大部分内容据来自李宏毅老师的授课资料:Attention-based Model。如发现有误,望不吝赐教。

1. 为什么需要Attention

最基本的seq2seq模型包含一个encoder和一个decoder,通常的做法是将一个输入的句子编码成一个固定大小的state,然后作为decoder的初始状态(当然也可以作为每一时刻的输入),但这样的一个状态对于decoder中的所有时刻都是一样的。 attention即为注意力,人脑在对于的不同部分的注意力是不同的。需要attention的原因是非常直观的,比如,我们期末考试的时候,我们需要老师划重点,划重点的目的就是为了尽量将我们的attention放在这部分的内容上,以期用最少的付出获取尽可能高的分数;再比如我们到一个新的班级,吸引我们attention的是不是颜值比较高的人?普通的模型可以看成所有部分的attention都是一样的,而这里的attention-based model对于不同的部分,重要的程度则不同。

2. Attention-based Model是什么

Attention-based Model其实就是一个相似性的度量,当前的输入与目标状态越相似,那么在当前的输入的权重就会越大,说明当前的输出越依赖于当前的输入。严格来说,Attention并算不上是一种新的model,而仅仅是在以往的模型中加入attention的思想,所以Attention-based Model或者Attention Mechanism是比较合理的叫法,而非Attention Model。

没有attention机制的encoder-decoder结构通常把encoder的最后一个状态作为decoder的输入(可能作为初始化,也可能作为每一时刻的输入),但是encoder的state毕竟是有限的,存储不了太多的信息,对于decoder过程,每一个步骤都和之前的输入都没有关系了,只与这个传入的state有关。attention机制的引入之后,decoder根据时刻的不同,让每一时刻的输入都有所不同。

再引用tensorflow源码attention_decoder()函数关于attention的注释:

“In this context ‘attention’ means that, during decoding, the RNN can look up information in the additional tensor attention_states, and it does this by focusing on a few entries from the tensor.”

3. Attention

对于机器翻译来说,比如我们翻译“机器学习”,在翻译“machine”的时候,我们希望模型更加关注的是“机器”而不是“学习”。那么,就从这个例子开始说吧(以下图片均来自上述课程链接的slides)

对于“match”, 理论上任何可以计算两个向量的相似度都可以,比如:

现在我们已经由match模块算出了当前输入输出的匹配度,然后我们需要计算当前的输出(实际为decoder端的隐状态)和每一个输入做一次match计算,分别可以得到当前的输出和所有输入的匹配度,由于计算出来并没有归一化,所以我们使用softmax,使其输出时所有权重之和为1。那么和每一个输入的权重都有了(由于下一个输出为“machine”,我们希望第一个权重和第二个权权重越大越好),那么我们可以计算出其加权向量和,作为下一次的输入。

这里有一个问题:就是如果match用后面的两种,那么参数应该怎么学呢?

如下图所示:

再看看Grammar as a Foreign Language一文当中的公式:

4. 遗留问题

本来我们已经结束了,但是仔细想想,其实还有一个地方有所疑问。就是加入match是一个简单地神经网络或者一个矩阵,神经网络的权值和矩阵里面的值怎么来?

5. to be continued

最近在用双向LSTM加上attention做知乎的比赛,但目前效果不是很好,具体等待比赛结束之后再详细记录。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年07月22日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0. 前言
  • 1. 为什么需要Attention
  • 2. Attention-based Model是什么
  • 3. Attention
  • 4. 遗留问题
  • 5. to be continued
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档