DeepMind最近为TensorFlow 2.0献祭了自己私藏的工具:
TF-Replicator ,本来是内部自用的一个软件库,能够让从来没做过分布式系统的研究人员方便地在多GPU/云TPU上部署他们的TensorFlow模型,也适用于Keras。
目前,TF-Replicator的编程模型已经作为TensorFlow中tf.distribute.Strategy的一部分开源。
推特上的一位工程师惊叹:这简直是TensorFlow 2.0里隐藏的宝藏啊!
使用TF-Replicator编写的代码与TensorFlow中为单个设备编写的代码类似,允许用户自由定义自己的模型运行循环。
用户只需要定义两个部分:
1.公开数据集的输入函数;
2.模型逻辑的步骤函数。
1# Deploying a model with TpuReplicator.
2repl = tf_replicator.TpuReplicator(3 num_workers=1, num_tpu_cores_per_worker=84)5with repl.context():6 model = resnet_model()7 base_optimizer = tf.train.AdamOptimizer()8 optimizer = repl.wrap_optimizer(base_optimizer)910# ... code to define replica input_fn and step_fn.1112per_replica_loss = repl.run(step_fn, input_fn)13train_op = tf.reduce_mean(per_replica_loss)1415with tf.train.MonitoredSession() as session:16 repl.init(session)17for i in xrange(num_train_steps):18 session.run(train_op)19 repl.shutdown(session)
现在,我们用GAN来测试一下TF-Replicator的效果。这里用到的是在ImageNet上训练的谱归一化GAN(SN-GAN, arXiv:1802.05957)。
相比在单一的一块GPU上训练,用TF-Replicator在多块GPU上分布式训练的效果要好得多。
比如,生成橙子的图片,这是batch size 8和batch size 16的时候:
基本看不出来是橙子了。
batch size 32和batch size 64要好一些,能看出来是橙子,但是一个像长了毛,一个像被拍了一巴掌:
batch size 128有了橙子果肉,batch size 256形状相对正常了:
示例中最高的batch size 512,橙子的形状已经和真实的橙子差不多了,果肉和果肉瓣之间的白色也可以看出来,除了皮有点厚之外这橙子质量没问题。
从分数来看,只要将batch size从64提高到512就可以将出实得分提高大约50%。
效果不错,希望DeepMind继续公开一些自用好货。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。